EventKit 学习(译)】的更多相关文章

From:http://docs.xamarin.com/guides/ios/platform_features/introduction_to_eventkit/ 本教程展示了对于如何通过EventKit访问和使用存储在日历数据库(Calendar Database)中的日历(Calendars).日历事件(CalendarEvents)和提醒的概述.并且讲述了重要的类(Class)还有他们的在编程中的用法,当然还有一些有关EventKit框架的常用任务. 概述 iOS有两个内建的日历应用:…
协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 1.x 深度学习秘籍 零.前言 一.TensorFlow 简介 二.回归 三.神经网络:感知器 四.卷积神经网络 五.高级卷积神经网络 六.循环神经网络 七.无监督学习 八.自编码器 九.强化学习 十.移动计算 十一.生成模型和 CapsNet…
新增了七个教程: PyTorch 中文官方教程 1.7 学习 PyTorch PyTorch 深度学习:60 分钟的突击 张量 torch.autograd的简要介绍 神经网络 训练分类器 通过示例学习 PyTorch 热身:NumPy PyTorch:张量 PyTorch:张量和 Autograd PyTorch:定义新的 Autograd 函数 PyTorch:nn PyTorch:optim PyTorch:自定义nn模块 PyTorch:控制流 + 权重共享 torch.nn到底是什么?…
新增了六个教程: TensorFlow 2 和 Keras 高级深度学习 零.前言 一.使用 Keras 入门高级深度学习 二.深度神经网络 三.自编码器 四.生成对抗网络(GAN) 五.改进的 GAN 六.纠缠表示 GAN 七.跨域 GAN 八.变分自编码器(VAE) 九.深度强化学习 十.策略梯度方法 十一.对象检测 十二.语义分割 十三.使用互信息的无监督学习 GCP 上的人工智能实用指南 零.前言 第 1 节:Google Cloud Platform 的基础 一.AI 和 GCP 概述…
新增了七个教程: TensorFlow 和 Keras 应用开发入门 零.前言 一.神经网络和深度学习简介 二.模型架构 三.模型评估和优化 四.产品化 TensorFlow 图像深度学习实用指南 零.前言 一.机器学习工具包 二.图片数据 三.经典神经网络 Python 元学习实用指南 零.前言 一.元学习导论 二.使用连体网络的人脸和音频识别 三.原型网络及其变体 四.使用 TensorFlow 的关系和匹配网络 五.记忆增强神经网络 六.MAML 及其变体 七.元 SGD 和 Reptil…
新增了四个教程: Python 人工智能中文版 0 前言 1 人工智能简介 2 人工智能的基本用例 3 机器学习管道 4 特征选择和特征工程 5 使用监督学习的分类和回归 6 集成学习的预测分析 7 通过无监督学习检测模式 8 构建推荐系统 9 逻辑编程 10 启发式搜索技术 11 遗传算法和遗传编程 12 云上的人工智能 13 使用人工智能构建游戏 14 构建语音识别器 15 自然语言处理 16 聊天机器人 17 序列数据和时间序列分析 18 图像识别 19 神经网络 20 将卷积神经网络用于…
公告 我们始终与所有创作者站在一起,为创作自由而战.我们还会提供一切必要的技术支持. 我们全力支持科研开源(DOCX)计划.希望大家了解这个倡议,把这个倡议与自己的兴趣点结合,做点力所能及的事情. 我们的部分文档已备份到 PYPI.NPM 和 Docker,详情请查看各个文档 README 中的"下载"一节. ApacheCN 项目的最终目标:五年内备份并翻译 Github 上的所有教程(其实快被我们啃完了,剩下的不多了). 警告各位培训班:对 ApacheCN 宣传文章的举报,也将视…
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology and Strategy @ IntuitionMachine.com 译自:https://medium.com/intuitionmachine/game-theory-maps-the-future-of-deep-learning-21e193b0e33a#.2vjbrl5di 若你一直fo…
译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/majoradvancementsdeeplearning2016/ 在过去的十多年来,深度学习一直是核心话题,2016年也不例外.本文回顾了他们认为可能会推动这个领域发展或已经对这个领域产生巨大贡献的技术.(1)无监督学习有史以来便是科研人员所面临的的主要挑战之一.由于大量产生式模型的提出,201…
(译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你学习这些状态下他们action的值.直观的讲,这个值,Q,是 状态-动作值(state-action value.) 所以,在Q-Leaning中,你设置初始 状态-动作值为0,然后你去附近溜溜并且探索 状态-动作空间.在你试了一个状态下的某一动作之后,你会评价将会转向哪一个状态.如果该动作将导致一…