介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
一.深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\) 二.前向和反向传播 1. 第\(l\)层的前向传播 输入为 \(a^{[l-1]}\) 输出为 \(a^{[l]}\), cache(…
第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLearning.ai学习笔记(一)神经网络和深度学习--Week4深层神经网络 第二章 改善深层神经网络 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以及优化--Week1深度学习的实用层面 DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试.正则化以…
因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logistic Regression with a Neural Network mindset v3.ipynb 很多朋友反映找不到h5文件,我已经上传了,具体请戳h5文件 week3 Planar data classification with one hidden layer v3.ipynb week4…
一.目标定位 这一小节视频主要介绍了我们在实现目标定位时标签该如何定义. 上图左下角给出了损失函数的计算公式(这里使用的是平方差) 如图示,加入我们需要定位出图像中是否有pedestrian,car,motorcycles.注意在这里我们假设图像中只肯呢个存在这三者中的一种或者都不存在,所以共有四种可能. \(P_c=1\)表示有三者中的一种 \(C_1=1\)表示有pedestrian,反之没有 \(C_2=1\)表示有car \(C_3=1\)表示有motorcycles \(b_*\)用于…
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based learning applied to document recognition,NG建议重点读II部分,泛读III部分):这个网络大概60k个参数.那个时期习惯于用average pooling(现在是max pooling),sigmoid/tanh(现在是ReLU),最后的分类函数现在已经不常用了(…
1. Case study:学习经典网络的原因是它们可以被迁移到其他任务中. 1.1)几种经典的网络: a)LeNet-5(LeCun et al., 1998. Gradient-based learning applied to document recognition,NG建议重点读II部分,泛读III部分):这个网络大概60k个参数.那个时期习惯于用average pooling(现在是max pooling),sigmoid/tanh(现在是ReLU),最后的分类函数现在已经不常用了(…
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ Applied Deep Learning - Part 1: Artificial Neural Ne…
作者:szx_spark 由于计算机视觉的大红大紫,二维卷积的用处范围最广.因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用. 1. 二维卷积 图中的输入的数据维度为\(14\times 14\),过滤器大小为\(5\times 5\),二者做卷积,输出的数据维度为\(10\times 10\)(\(14-5+1=10\)).如果你对卷积维度的计算不清楚,可以参考我之前的博客吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share https://blog.csdn.net/eddy_zheng/article/details/50763648 1.…
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                                  目标识别                               语义分割 卷积神经网络与神经网络的形状对比, 卷积是有厚度的 卷积在提取特征时的图像变化,从刚开始较低水平的特征图,到最后较高水平的特征图的变化,原先提取的是图片的特征,后面提取到的是一些高级的分类特征 1.…
现有的当前最佳机器翻译系统都是基于编码器-解码器架构的,二者都有注意力机制,但现有的注意力机制建模能力有限.本文提出了一种替代方法,这种方法依赖于跨越两个序列的单个 2D 卷积神经网络.该网络的每一层都会根据当前生成的输出序列重新编码源 token.因此类似注意力机制的属性适用于整个网络.该模型得到了非常出色的结果,比当前最佳的编码器-解码器系统还要出色,而且从概念上讲,该模型也更加简单.参数更少. 引言 深度神经网络对自然语言处理技术造成了深远的影响,尤其是机器翻译(Blunsom, 2013…
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转.平移.缩放.剪裁性.为什么要做这个很奇怪的结构呢?原因还是因为CNN不够鲁棒,比如把一张图片颠倒一下,可能就不认识了(这里mark一下,提高CNN的泛化能力,值得继续花很大力气,STN是一个思路,读者以及我自己应该多想想,还有什么方法?). 今天介绍的这一篇可变形卷积网络deformable co…
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one_hot=true) 2.运行TensorFlow的InterractiveSession: sess = tf.InteractiveSession() 3.构建Softmax回归模型: 占位符tf.placeholder 变量tf.Variable 类别预测与损失函数 tf.nn.softmax…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
[导读]神经网络的初始化是训练流程的重要基础环节,会对模型的性能.收敛性.收敛速度等产生重要的影响.本文是deeplearning.ai的一篇技术博客,文章指出,对初始化值的大小选取不当,  可能造成梯度爆炸或梯度消失等问题,并提出了针对性的解决方法. 初始化会对深度神经网络模型的训练时间和收敛性产生重大影响.简单的初始化方法可以加速训练,但使用这些方法需要注意小心常见的陷阱.本文将解释如何有效地对神经网络参数进行初始化. 有效的初始化对构建模型至关重要 要构建机器学习算法,通常要定义一个体系结…
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Week 5: Neural Networks: Learning 本来上周开始该学习这个内容,也是先提交了作业,今天才来看看具体的代码:感觉这个课程本身对基础巩固很好.没有连续学习感觉有些有点忘了,最终的目的是自己能够推导这个内容. 本来想跟着学习搞个电子证书的,结果申请的到期时间是2017.3.31;…
本系列主要是我对吴恩达的deeplearning.ai课程的理解和记录,完整的课程笔记已经有很多了,因此只记录我认为重要的东西和自己的一些理解. 第一门课 神经网络和深度学习(Neural Networks and Deep Learning) 第一周:深度学习引言(Introduction to Deep Learning) 1.常用神经网络的结构与对应的数据类型 数据类型 结构化数据:表格类型的数据,有明确的行和列. 非结构化数据:音频.视频.图像.文本等类型的数据. 网络结构 标准的NN结…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫分类器为例,假设我们的模型表现的还不错,但是依旧存在误差,预测后错误标记的数据中有一部分狗图片被错误的标记成了猫.这个时候按照一般的思路可能是想通过训练出狗分类器模型来提高猫分类器,或者其他的办法,反正就是要让分类器更好地区分狗和猫. 但是现在的问题是,假如错误分类的100个样本中,只有5个狗样本被…
一.RNN基本结构 普通神经网络不能处理时间序列的信息,只能割裂的单个处理,同时普通神经网络如果用来处理文本信息的话,参数数目将是非常庞大,因为如果采用one-hot表示词的话,维度非常大. RNN可以解决这两个问题: 1)RNN属于循环神经网络,当从左到右读取文本信息的时候,上一时刻的状态输出可以传递到下一时刻,例如上图的a表示状态,a(1)向下传递,这样就考虑了前面的信息,如果是双向RNN的话,上下文都考虑进去了. 2)RNN参数是共享的.为方便理解,上述图示是展开的RNN结构,其实RNN只…
CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提取时间序列信息,放在特征提取层(如CNN)之后. DNN 说白了就是 多层网络,只是用了很多技巧,让它能够 deep .   什么是深度学习 深度学习=深度神经网络+机器学习 人工智能 > 机器学习 > 表示学习 > 深度学习   神经元模型 输入信号.加权求和.加偏置.激活函数.输出 全连…
目录 1 问题设置 1.1 数据集和预处理 1.2 概览整个模型 2. 创建模型模块 2.1 在优化循环中梯度裁剪 2.2 采样 3. 构建语言模型 3.1 梯度下降 3.2 训练模型 4. 结论     本文是DeepLearning.ai的第五门课作业: Character level language model - Dinosaurus Island   1 问题设置   欢迎来到恐龙岛! 6500万年前,恐龙就已经存在,并且在这种任务下它们又回来了.你负责一项特殊任务.领先的生物学研究…
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络和深度学习 周数 名称 类型 地址 week1 深度学习简介 测验 略 week2 神经网络基础 笔记 逻辑回归 逻辑回归推导 具有神经网络思维的Logistic回归 编程作业 识别猫 week3 浅层神经网络…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有点贵,所以能听到哪儿算哪儿吧... Week one主要讲了近年来为啥Deep learning火起来了,有时间另起一贴总结一下. Week two回顾了Logistic Regression(逻辑回归).虽然它听上去已经不是一个陌生的概念了,但是每次想起时还是会迟疑一下,所以干脆记录一发备忘. 1. 逻辑回…