半监督的GAN算法】的更多相关文章

ImprovedGAN $ Loss = Loss_{supervised}   + \lambda * Loss_{unsupervised} $ 第二项形式与原始的GAN模型类似. 参考: Improved Techniques for Training GANs 代码: https://github.com/Sleepychord/ImprovedGAN-pytorch/blob/master/ImprovedGAN.py…
半监督生成对抗网络 一.SGAN简介 半监督学习(semi-supervised learning)是GAN在实际应用中最有前途的领域之一,与监督学习(数据集中的每个样本有一个标签)和无监督学习(不使用任何标签)不同,半监督学习只为训练数据集的一小部分提供类别标签.通过内化数据中的隐藏结构,半监督学习努力从标注数据点的小子集中归纳,以有效地对从未见过的新样本进行分类,要使半监督学习有效,标签数据和无标签数据必须来自相同的基本分布. 缺少标签数据集是机器学习研究和实际应用中的主要瓶颈之一,尽管无标…
1.前言 对大量需要分类的文本数据进行标记是一项繁琐.耗时的任务,而真实世界中,如互联网上存在大量的未标注的数据,获取这些是容易和廉价的.在下面的内容中,我们介绍使用半监督学习和EM算法,充分结合大量未标记的样本,以期获得文本分类更高的准确率.本文使用的是多项式朴素贝叶斯作为分类器,通过EM算法进行训练,使用有标记数据以及未标记的数据.研究了多类分类准确率与训练集中未标记数据的比例之间的关系.并探索方法来降低EM过程的计算代价来加速训练.结果显示,半监督EM-NB分类器可以在只给2%标记数据情况…
小样本利器2.文本对抗+半监督 FGSM & VAT & FGM代码实现 上一章我们聊了聊通过一致性正则的半监督方案,使用大量的未标注样本来提升小样本模型的泛化能力.这一章我们结合FGSM,FGM,VAT看下如何使用对抗训练,以及对抗训练结合半监督来提升模型的鲁棒性.本章我们会混着CV和NLP一起来说,VAT的两篇是CV领域的论文,而FGM是CV迁移到NLP的实现方案,一作都是同一位作者大大.FGM的tensorflow实现详见Github-SimpleClassification 我们会…
经典以及最新的半监督方法 (SSL) 代码总结 最近因为做实验需要,收集了一些半监督方法的代码,列出了一个清单: 1. NIPS 2015 Semi-Supervised Learning with Ladder Networks https://github.com/CuriousAI/ladder 2. NIPS 2014 Semi-supervised-Learning-with-Deep-Generative-Models https://github.com/wangxiao57915…
歧义问题方面,笔者一直比较关注利用词向量解决歧义问题: 也许你寄希望于一个词向量能捕获所有的语义信息(例如run即是动车也是名词),但是什么样的词向量都不能很好地进行凸显. 这篇论文有一些利用词向量的办法:Improving Word Representations Via Global Context And Multiple Word Prototypes(Huang et al. 2012) 解决思路:对词窗口进行聚类,并对每个单词词保留聚类标签,例如bank1, bank2等 来源于笔者…
摘要: 本文解决了半监督视频目标分割的问题.给定第一帧的mask,将目标从视频背景中分离出来.本文提出OSVOS,基于FCN框架的,可以连续依次地将在IMAGENET上学到的信息转移到通用语义信息,实现前景分割的目的,之后学习单个标注物体的外形.尽管所有的帧序列都是独立处理的,但结果却是时序相关的,连续稳定的.我们在两个标注的视频数据集上进行了测试,结果显示OSVOS是非常快的,同时较当前流行的最好算法强一大截. 介绍: CNN网络划时代的改变了计算机视觉领域.极大的提升了图像分类,目标检测的准…
根据模型的训练策略划分: 直推式学习(Transductive Semi-supervised Learning) 无标记数据就是最终要用来测试的数据,学习的目的就是在这些数据上取得最佳泛化能力. 归纳式学习(Inductive Semi-supervised Learning) 认为待识别样本不能是训练中所用的无标签数据,不能参与到训练过程. ​ 这两者的区别在于:预测样本是不是在训练的时候已经见(用)过.通常直推式比归纳式的效果要好,因为归纳式还需要从训练泛化到测试. 根据无标签数据的使用方…
无监督域对抗算法:ICCV2019论文解析 Drop to Adapt: Learning Discriminative Features for Unsupervised Domain Adaptation 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lee_Drop_to_Adapt_Learning_Discriminative_Features_for_Unsupervised_Domain_Adaptation…
Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法. 在传统的GAN网络中,discriminator大多是用来进行输入图像的真伪分类(Datasets里面sample的图片打高分,generator产生的图片打低分),而本文设计了一种全卷积的discriminator,用于区分输入标签图中各个像素(pixel-wise)的分类结果是ground…