洛谷 P3803 多项式乘法】的更多相关文章

新技能--FFT. 可在 \(O(nlogn)\) 时间内完成多项式在系数表达与点值表达之间的转换. 其中最关键的一点便为单位复数根,有神奇的折半性质. 多项式乘法(即为卷积)的常见形式: \[ C_n=\sum\limits_{i=0}^n A_iB_{n-i} \] 基本思路为先将系数表达 -> 点值表达 \(O(nlogn)\) 随后点值 \(O(n)\) 进行乘法运算 最后将点值表达 -> 系数表达 \(O(nlogn)\) 代码 #include<cstdio> #inc…
题目:https://www.luogu.org/problemnew/show/P3803 终于学了FFT了! 参考博客:https://www.cnblogs.com/zwfymqz/p/8244902.html http://www.cnblogs.com/RabbitHu/p/FFT.html 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm>…
题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1 2 1 输出样例#1: 1 4 5 2 说明 保证输入中的系数大于等于 0 且小于…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
洛谷p3803 FFT入门 ps:花了我一天的时间弄懂fft的原理,感觉fft的折半很神奇! 大致谈一谈FFT的基本原理: 对于两个多项式的卷积,可以O(n^2)求出来(妥妥的暴力) 显然一个多项式可以用a0+a1X+a2X^2+a3X^3+a4X^4--表示. 也可以用(x1,y1),(x2,y2),(x3,y3),(x4,y4)的点集来表示. 用点值表示有一个好处:两个多项式的卷积可以直接取相同的x值,y值相乘得到. 那么,怎么转化为点值表示呢? 直接代进去?显然也是O(n^2),没用--…
洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. 第二行有 n+1 个整数,其中第 i 个整数表示第 n-i+1 次项的系数,每两个整数之间用空格隔开. 输出格式 输出共 1 行,按题目所述格式输出多项式. 输入输出样例 输入样例#1: 5 100 -1 1 -3 0 10输出样例#1: 100x^5-x^4+x^3-3x^2+10输入样例#2:…
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1…
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) 的卷积. 思路 FFT 又是一道 \(FFT\) 的模板题,不过用递归的 \(FFT\) 会超时. 代码 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1); typedef complex<dou…
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O(n^2)\). \(FFT\)算法基本思想是把系数表达式转换成点值表达式,求出卷积的点值表达式,再转换回系数表达式. 何为点值表达式? 把多项式看成一个函数,比如\(n\)次多项式\(F\)可以看成一个\(n\)次函数\(F(x)=a_0+a_1x+a_2x^2+\cdots +a_nx^n\) 众…
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 1 2 1 2 1 2 1 输出样例#1: 1 4 5 2 说明 保证输入中的系数大于等于 0 且小于等于9.…