出处: Michael Nielsen的<Neural Network and Deep Leraning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR硕士生 徐伟 (https://github.com/memeda) 声明:我们将在每周一,周四,周日定期连载该书的中文翻译,如需转载请联系wechat_editors@ir.hit.edu.cn,未经授权不得转载. “本文转载自[哈工大SCIR]微信公众号,转载已征得同意.” 使用神经网络识别手写数字 感知机 sigmo…
1 什么是逻辑回归 1.1逻辑回归与线性回归的区别: 线性回归预测的是一个连续的值,不论是单变量还是多变量(比如多层感知器),他都返回的是一个连续的值,放在图中就是条连续的曲线,他常用来表示的数学方法是Y=aX+b: 与之相对的,逻辑回归给出的值并不是连续的,而是 类似于"是" 和 "否" 的回答,这就类似于二元分类的问题. 1.2逻辑回归实现(sigmoid): 在逻辑回归算法中,我们常使用的激活函数是Sigmoid函数,他能够将数据映射到 0 到 1 之间,并且…
Theano https://github.com/Theano/Theano 描述: Theano 是一个python库, 允许你定义, 优化并且有效地评估涉及到多维数组的数学表达式. 它与GPUs一起工作, 并且在符号微分方面表现优秀. 文档: http://deeplearning.net/software/theano/ 概述: Theano是数值计算的主力, 它支持了许多我们列表当中的其他的深度学习框架. Theano由 frederic bastien 创建, 这是蒙特利尔大学机器学…
常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) relu: y = max(0, x) 其代码实现如下: import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def tanh(x): return (np.e…
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1.1交叉熵损失函数——分类 (1)熵(Entropy) 变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.log以2为底! H(x) = E[I(xi)] = E[ log(2,1/p(xi)) ] = -∑p(xi)log(2,p(xi)) (i=1,2,..n) (2)交叉熵(Cr…
[中英][吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第二周测验 第2周测验 - 神经网络基础 神经元节点计算什么? [ ]神经元节点先计算激活函数,再计算线性函数(z = Wx + b) [★]神经元节点先计算线性函数(z = Wx + b),再计算激活. [ ]神经元节点计算函数g,函数g计算(Wx + b). [ ]在 将输出应用于激活函数之前,神经元节点计算所有特征的平均值 请注意:神经元的输出是a = g(Wx + b),其中g是激活函数(sigmoid,tanh,R…
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程. 常见的损失函数为两种,一种是均方差函数,另一种是交叉熵函数.对于深度学习而言,交叉熵函数要优于均方差函数,原因在于交叉熵函数配合输出层的激活函数如sigmoid或softmax函数能更快地加速深度学习的训…
开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力.那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考.你最看好哪个深度学习框架呢? 现在的许多机器学习框架都可以在图像识别.手写识别.视频识别.语音识别.目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题.所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题. 下图总结了在 GitH…
http://gitbook.cn/gitchat/column/59f7e38160c9361563ebea95/topic/59f7e86d60c9361563ebeee5 wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html 一.简介 手写图片识别的实现,分为三步: 1,数据的准备 2,模型的设计 3,代码实现 我的另一篇博文-神经网络的解释 什么是神经网络 input层代表将二维数组从所有行都排…
 =================第3周 浅层神经网络=============== ===3..1  神经网络概览=== ===3.2  神经网络表示=== ===3.3  计算神经网络的输出=== 方括号代表层数.   ===3.4  多个例子中的向量化=== ===3.5  向量化实现的解释===  方括号值的是层数,括号代表样本编号.ppt中显示的,不同row代表某一层的hidden unit,不同列代表各个样本,挺形象的呀,有趣.   ===3.6  激活函数=== tanh几乎各方…
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图是一个人工神经元的模型: (…
本文转载自:https://www.cnblogs.com/lc1217/p/7324935.html 说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例…
转自http://www.cnblogs.com/lc1217/p/7324935.html 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式可以查阅相关资料) 如下图就表示卷积的运算过程: (图1) 卷积运算一个重要的特点就是,通过卷积运算,可以使原信号特征增强,并且降低噪音. 1.2 激活函数 这里以常用的激活函数sigmoid为例: 把上述的计算结果269带入此公式,得出f(x)=1 1.3 神经元 如图…
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A neuron computes an activation function followed by a linear function (z = Wx + b)(神经 元节点先计算激活函数,再计算线性函数(z = Wx + b)) [ ] A neuron computes a linear f…
深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅读数 652更多 分类专栏: python机器学习 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_29831163/article/details/89887655 [ …
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题.比如在下面的这个问题中:如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类.但如果情况变得复杂了一点呢?在上图中(图片来源),数据就变成了…
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活什么.在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题. 比如在下面的这个问题中: 如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直线就已经能够对样本进行很好地分类. 但如果情况变得复杂了一点呢?在上图中(图片来源),数据…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为第2层.所以这个神经网络被称为两层神经网络,我们不把输入层当做一个标准的层. 3.3 计算神经网络的输出 对于输入层的输入,我们把输入看做是一个矩阵,对于第一层的第一个神经元结点,计算\(W^T*x+b\) 3.4 多个样本例子中的向量化 上一节讨论的是对于单个样本我们使用神经网络表示的方法,现在我…
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有如下一些性质: 非线性: 当激活函数是线性的,一个两层的神经网络就可以基本上逼近所有的函数.但如果激活函数是恒等激活函数的时候,即f(x)=x,就不满足这个性质,而且如果MLP(多层感知机)使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的: 可微性: 当优化方法是基于梯度的时候,就体现了…
目录 为什么要用激活函数 sigmod tanh ReLU LeakyReLU ReLU6 参考资料 为什么要用激活函数 在神经网络中,如果不对上一层结点的输出做非线性转换的话,再深的网络也是线性模型,只能把输入线性组合再输出(如下图),不能学习到复杂的映射关系,因此需要使用激活函数这个非线性函数做转换. 返回目录 sigmod Sigmod激活函数和导函数分别为 对应的图像分别为:    对应代码为:   Sigmod(x)的缺点: ①输出范围在0~1之间,均值为0.5,需要做数据偏移,不方便…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
激活函数也是神经网络中一个很重的部分.每一层的网络输出都要经过激活函数.比较常用的有linear,sigmoid,tanh,softmax等.Keras内置提供了很全的激活函数,包括像LeakyReLU和PReLU这种比较新的激活函数.  一.激活函数的使用 常用的方法在Activation层中可以找到.看代码. from keras.layers.core import Activation, Dense model.add(Dense(64)) model.add(Activation('t…
深度学习优化器 深度学习中的优化器均采用了梯度下降的方式进行优化,所谓炼丹我觉得优化器可以当作灶,它控制着火量的大小.形式与时间等. 初级的优化器 首先我们来一下看最初级的灶台(100 - 1000 元) Batch Gradient Descent (BGD) 名字叫做批梯度下降,实际上每次迭代会使用全部的数据来更新梯度(应该是取所有数据的平均梯度),具体公式如下: \[\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta) \] 伪代码如…
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构,各类优化方法 1.卷积神经网络工作原理的直观解释 https://www.zhihu.com/question/39022858 简单来说,在一定意义上,训练CNN就是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活能力,以达到CNN网络的分类/检测等目的. 2.卷积神经网络的复杂度分析 ht…
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07: How to make netural network wide and deep ? Lecture 08: Pytorch DataLoader Lecture 09: softmax Classifier part one part two : real problem - MNIST i…
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmsprop.sgd,效果最好的组合是:prelu+rmsprop.我的代码如下: # Simple example using recurrent neural network to predict time series values from __future__ import division, p…
在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序. 在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如…
目录 1.基本介绍 2.模型 3.优缺点/其他 参考 1.基本介绍 DCGAN是生成对抗网络GAN中一种常见的模型结构.其中的生成器和判别器都是神经网络模型. GAN是一种生成式对抗网络,即通过对抗的方式,去学习数据分布的生成式模型.所谓的对抗,指的是生成网络和判别网络的互相对抗.生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成的假样本. 优化目标函数为:\[min_{G} max_{D} V(D,G) = min_{G} max_{D} E_{x~P_{data}(…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…