Hadoop入门介绍一】的更多相关文章

初识hadoop入门介绍 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. <Hadoop基础教程>是我读的第一本Hadoop书籍,当然在线只能试读第一章,不过对Hadoop历史.核心技术和应用场景有了初步了解. ·        Hadoop历史 雏形开始于2002年的Apache的Nutch,Nutch是一个开源Java 实现的搜索引擎.它提供了我们运行自己的搜索引擎所需的全…
Hadoop1.是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储.2.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序…
Technorati 标记: hadoop,生态圈,ecosystem,yarn,spark,入门 1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. 具有可靠.高效.可伸缩的特点. Hadoop的核心是YARN,HDFS和Mapreduce 下图是hadoop生态系统,集成spark生态圈.在未来一段时间内,hadoop将于spark共存,hadoop与…
HDFS入门介绍 概述 HDFS全称为Hadoop Distribute File System,也就是Hadoop分布式文件系统,是Hadoop的核心组件之一. 分布式文件系统是横跨在多台计算机上的存储系统,主要解决的就是大数据存储的问题 特性 master/slave架构 HDFS集群一般是由一个 NameNode 和一定数目的 DataNode 组成.NameNode 是 HDFS 集群主节点,DataNode 是 HDFS 集群从节点. 分块存储 分块存储存在的原因: 假如有100台机器…
本帖最后由 howtodown 于 2015-4-2 23:15 编辑 问题导读 1.Hadoop生态圈介绍了哪些组件,分别都是什么? 2.大数据与Hadoop是什么关系? 本章主要内容: 理解大数据的挑战 了解Hadoop生态圈 了解Hadoop发行版 使用基于Hadoop的企业级应用 你可能听别人说过,我们生活在“大数据”的环境中.技术驱动着当今世界的发展,计算能力飞速增长,电子设备越来越普遍,因特网越来越容易接入,与此同时,比以往任何时候都多的数据正在被传输和收集. 企业正在以惊人的速度产…
紧接着<Hadoop入门学习笔记---part3>中的继续了解如何用java在程序中操作HDFS. 众所周知,对文件的操作无非是创建,查看,下载,删除.下面我们就开始应用java程序进行操作,前提是按照<Hadoop入门学习笔记---part2>中的已经在虚拟机中搭建好了Hadoop伪分布环境:并且确定现在linux操作系统中hadoop的几个进程已经完全启动了. 好了,废话不多说!实际的例子走起. 在myeclipse中新建一个java工程: 在项目工程中新建一个lib包用于存放…
2015年元旦,好好学习,天天向上.良好的开端是成功的一半,任何学习都不能中断,只有坚持才会出结果.继续学习Hadoop.冰冻三尺,非一日之寒! 经过Hadoop的伪分布集群环境的搭建,基本对Hadoop有了一个基础的了解.但是还是有一些理论性的东西需要重复理解,这样才能彻底的记住它们.个人认为重复是记忆之母.精简一下: NameNode:管理集群,并且记录DataNode文件信息: SecondaryNameNode:可以做冷备份,对一定范围内的数据作快照性备份: DataNode:存储数据:…
原文地址:大数据技术Hadoop入门理论系列之一----hadoop生态圈介绍   1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. 具有可靠.高效.可伸缩的特点. Hadoop的核心是YARN,HDFS和Mapreduce 下图是hadoop生态系统,集成spark生态圈.在未来一段时间内,hadoop将于spark共存,hadoop与spark 都能…
随着毕业设计的进行,大学四年正式进入尾声.任你玩四年的大学的最后一次作业最后在激烈的选题中尘埃落定.无论选择了怎样的选题,无论最后的结果是怎样的,对于大学里面的这最后一份作业,也希望自己能够尽心尽力,好好做.正是因为选题和hadoop有关,现在正式开始学习hadoop.将笔记整理于此,希望与志同道合的朋友共同交流. 作者:itRed 邮箱:it_red@sina.com 个人博客链接:http://www.cnblogs.com/itred 好了,废话不多说.进入正题!开始hadoop的学习.…
大数据:Hadoop入门 一:什么是大数据 什么是大数据: (1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等.这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB). 2.大数据的特点: (1.)体量巨大.按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级. (2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,…