5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术24 使用Avro存储多个小文件假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中.很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度.Yahoo估计平均每个文件需要6…
5.2 基于压缩的高效存储(续) (仅包括技术27) 技术27 在MapReduce,Hive和Pig中使用可分块的LZOP 如果一个文本文件即使经过压缩后仍然比HDFS的块的大小要大,就需要考虑选择一个支持分块的压缩编码器,以防一个单一的map任务来处理整个超大的文件. LZOP可以满足分块的要求,但是使用起来很复杂.原因在于LZOP不是直接支持分块.LZOP是基于块的格式,但是并不支持块的随机访问. 问题 需要选择一个压缩编码器使MapReduce可以调用多个任务并行处理一个单一的压缩文件.…
5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop更高效处理文件,就需要选择一个合适的压缩编码器,加快作业运行,增加集群的数据存储能力. 技术25 为待处理数据选择正确的压缩编码器在HDFS上使用压缩并不像ZFS文件系统上那样透明,特别是在处理那些可分块的压缩文件时.(这些将在本章中稍后介绍.)由于Avro和SequenceFiles等文件格式提供…
4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业(job)的全部输出进行总体排序. 例如:需要了解前N个最受欢迎的用户或网页的数据分析工作. 在这一节中,有两个场景需要对MapReduce的排序行为进行优化. 次排序(Secondary sort) 总排序(Total order sorting) 次排序可以根据reduce的键对它的值进行排序.如…
6.2 诊断性能瓶颈 有的时候作业的执行时间会长得惊人.想靠猜也是很难猜对问题在哪.这一章中将介绍如何界定问题,找到根源.涉及的工具中有的是Hadoop自带的,有的是本书提供的. 系统监控和Hadoop任务 在Hadoop的0.20.x版本中,并没有提供MapReduce任务的CPU和内存的性能指标的抽取方法.不过在0.22版本中,CPU和内存性能指标将会被写道作业的历史信息文件中.并且可以通过Hadoop的用户界面来查看这些. 6.2.1 理解MapReduce作业性能的影响因子 从大的方面来…
6.1 测量MapReduce和环境的性能指标 性能调优的基础系统的性能指标和实验数据.依据这些指标和数据,才能找到系统的性能瓶颈.性能指标和实验数据要通过一系列的工具和过程才能得到. 这部分里,将介绍Hadoop自带的工具和性能指标.还将捎带介绍性能监控工具. 6.1.1 作业统计数据抽取工具 这一章中介绍的很多技术都需要从Hadoop中抽取作业和任务的性能指标.有以下三种办法抽取这些统计数据: 用JobTracker UI来查看作业和任务的计数器. 用Hadoop CLI(命令行界面)来查看…
原书章节 原书章节题目 翻译文章序号 翻译文章题目 链接 4.1 Joining Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.html 4.1.1 Repartition join Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.cnblogs.com/datacloud/p/3578509.h…
附录D.2 复制连接框架 复制连接是map端连接,得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接的实现非常直接明了.更具体的内容可以参考Chunk Lam的<Hadoop in Action>. 这个部分的目标是:创建一个可以支持任意类型的数据集的通用的复制连接框架.这个框架中提供了一个优化的小功能:动态监测分布式缓存内容和输入块的大小,并判断哪个更大.如果输入块较小,那么你就需要将map的输入块放到内存缓冲中,然后在map的cleanup方法中执行连接操作了…
4.3 抽样(Sampling) 用基于MapReduce的程序来处理TB级的数据集,要花费的时间可能是数以小时计.仅仅是优化代码是很难达到良好的效果. 在开发和调试代码的时候,没有必要处理整个数据集.但如果在这种情况下要保证数据集能够被正确地处理,就需要用到抽样了.抽样是统计学中的一个方法.它通过一定的过程从整个数据中抽取出一个子数据集.这个子数据集能够代表整体数据集的数据分布状况.在MapReduce中,开发人员可以只针对这个子数据集进行开发调试,极大减小了系统负担,提高了开发效率. 技术2…
6.2.3 Reduce的性能问题 Reduce的性能问题有和map类似的方面,也有和map不同的方面.图6.13是reduce任务的具体的执行各阶段,标识了可能影响性能的区域. 这一章将介绍影响reduce任务性能的常见问题. 技术33 Reduce实例不足或过多 尽管map段的并行化程度在大部分情况下是自动设置的,但是在reduce端,reduce实例的数量是完全自定义的.如果reduce实例不足或过多,集群的性能就很难得到充分发挥. 问题 需要确定reduce实例的数量是否是作业运行缓慢的…