MapReduce-计数器】的更多相关文章

1.MapReduce计数器是什么? 计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. 2.MapReduce计数器能做什么? MapReduce 计数器(Counter)为我们提供一个窗口,用于观察 MapReduce Job 运行期的各种细节数据.对MapReduce性能调优很有帮助,MapReduce性能优化的评估大部分都是基于这些 Counter 的数值表现出来的. 3.MapReduce 都有哪些内置计数…
MapReduce框架内置了一些计数器的支持,当然,我们也可以设置自己的计数器用来满足一些特殊的要求. 其实计数器可以用来完成很多事,关键要看你如何用,例如你想知道map输入数据的指定记录特定的信息有多少可以设置计数,还有,在MR执行过程中,一些特定事件的发生次数也可以记录.使用计数器的莫大好处在于整个计数的过程只需要再map阶段就可以完成,而且也可以不做任何输出,可以快速的得到自己想要的一些计数结果.但并不是计数器可以设置为无限多,因为计数器过多会影响JT的效率,甚至可能被自定义的分析程序拖垮…
转自:http://my.oschina.net/leejun2005/blog/276891?utm_source=tuicool&utm_medium=referral 1.计数器 简介 在许多情况下,一个用户需要了解待分析的数据,尽管这并非所要执行的分析任务 的核心内容.以统计数据集中无效记录数目的任务为例,如果发现无效记录的比例 相当高,那么就需要认真思考为何存在如此多无效记录.是所采用的检测程序存在 缺陷,还是数据集质量确实很低,包含大量无效记录?如果确定是数据集的质量问 题,则可能需…
   前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分布式缓存). 一 概述 定义 MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间. 适用范围:数据量大,但是数据种类小可以放入内存. 基…
MapReduce 多 Job 串联 需求 一个稍复杂点的处理逻辑往往需要多个 MapReduce 程序串联处理,多 job 的串联可以借助 MapReduce 框架的 JobControl 实现 实例 以下有两个 MapReduce 任务,分别是 Flow 的 SumMR 和 SortMR,其中有依赖关系:SumMR 的输出是 SortMR 的输入,所以 SortMR 的启动得在 SumMR 完成之后 Configuration conf1 = new Configuration(); Con…
不多说,直接上代码. MapReduce 计数器是什么?    计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们可以在程序的某个位置插入计数器,记录数据或者进度的变化情况. MapReduce 计数器能做什么? MapReduce 计数器(Counter)为我们提供一个窗口,用于观察 MapReduce Job 运行期的各种细节数据.对 MapReduce 性能调优很有帮助,MapReduce 性能优化的评估大部分都是基于这些 Counter 的数值表现出来的. MapRe…
mapreduce 计数器用来做某个信息的统计. 计数器是全局的.mapreduce 框架将跨所有map和reduce聚集这些计数器,并且作业结束时产生一个最终的结果. 语法像 java 的 enum 类型. 需求: 统计某个目录下,各个文件一共出现的行数,和出现单词的总数. 思路: 定义一个计数器. package com.mapreduce.count; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop…
MapReduce 计数器.最值: 计数器 数据集在进行MapReduce运算过程中,许多时候,用户希望了解待分析的数据的运行的运行情况.Hadoop内置的计数器功能收集作业的主要统计信息,可以帮助用户理解程序的运行情况,辅助用户诊断故障. SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory] 18/12/28 10:37:46 INFO client.RMProxy: Connecting to Resourc…
一.自定义in/outputFormat 1.需求 现有一些原始日志需要做增强解析处理,流程: 1. 从原始日志文件中读取数据 2. 根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志 3. 如果成功增强,则输出到增强结果目录:如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录 1374609560.11 1374609560.16 1374609560.16 1374609560.16 110 5 8615038208365 460023383869133 86964200…
一. 倒排索引(多job串联) 1. 需求分析 有大量的文本(文档.网页),需要建立搜索索引 xyg pingping xyg ss xyg ss a.txt xyg pingping xyg pingping pingping ss b.txt xyg ss xyg pingping c.txt (1)第一次预期输出结果 xyg--a.txt xyg--b.txt xyg--c.txt pingping--a.txt pingping--b.txt pingping--c.txt ss--a.…
1. MapReduce计数器是什么 计数器是用来记录Job的执行进度和状态的,其作用类似于日志.我们可以在程序的某个位置插入计数器,记录数据或进度的变化情况. 2. MapReduce计数器能做什么 计数器为我们提供了一个窗口,用于观察Job运行期间的各种细节数据,对MapReduce的性能调优很有帮助,MapReduce性能优化的评估大部分都是基于这些计数器Counter的数值来表现的. 3. MapReduce都有哪些内置计数器 MapReduce中自带了许多默认的Counter计数器,要…
一.            Zookeeper( 分布式协调服务框架 ) 1.    Zookeeper概述和集群搭建: (1)       Zookeeper概述: Zookeeper 是一个分布式协调服务的开源框架.主要用来解决分布式集群中应用系统的一致性问题,例如怎样避免同时操作同一数据造成脏读的问题.ZooKeeper 本质上是一个分布式的小文件存储系统.提供基于类似于文件系统的目录树方式的数据存储,并且可以对树中的节点进行有效管理. (2)       Zookeeper特性: 全局数…
不多说,直接上代码. Hadoop MapReduce编程 API入门系列之小文件合并(二十九) 生成的结果,作为输入源. 代码 package zhouls.bigdata.myMapReduce.ParseTVDataCompressAndCounter; import java.net.URI; import java.util.List;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Co…
 第一部分.Hadoop计数器简述 hadoop计数器: 可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理. 内置计数器(MapReduce相关.文件系统相关和作业调度相关), 也可以通过http://master:50030/jobdetails.jsp查看 MapReduce的输出: 运行jar包的详细步骤: [root@neusoft-master filecontent]# hadoop jar Traffic.jar /data/HTTP_20…
第2节 mapreduce深入学习:6. MapReduce当中的计数器 计数器是收集作业统计信息的有效手段之一,用于质量控制或应用级统计.计数器还可辅助诊断系统故障.如果需要将日志信息传输到map 或reduce 任务, 更好的方法通常是看能否用一个计数器值来记录某一特定事件的发生.对于大型分布式作业而言,使用计数器更为方便.除了因为获取计数器值比输出日志更方便,还有根据计数器值统计特定事件的发生次数要比分析一堆日志文件容易得多. hadoop内置计数器列表 MapReduce任务计数器 or…
前言 本章主要讲述了如何在mapreduce任务中添加自定义的计数器,从所有任务中聚合信息,并且最终输出到mapreduce web ui中得到统计信息. 准备工作 数据集:ufo-60000条记录,这个数据集有一系列包含下列字段的UFO目击事件记录组成,每条记录的字段都是以tab键分割,请看http://www.cnblogs.com/cafebabe-yun/p/8679994.html sighting date:UFO目击事件发生时间 Recorded date:报告目击事件的时间 Lo…
MapReduce应用场景 前一阵子参加炼数成金的MapReduce培训,培训中的作业例子比较有代表性,用于解释问题再好不过了.有一本国外的有关MR的教材,比较实用,点此下载. MR能解决什么问题?一般来说,用的最多的应该是日志分析,海量数据排序处理.最近一段时间公司用MR来解决大量日志的离线并行分析问题. MapReduce机制 对于不熟悉MR工作原理的同学,推荐大家先去看一篇博文:http://blog.csdn.net/athenaer/article/details/8203990 常用…
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个…
一.Hadoop中的计数器 计数器:计数器是用来记录job的执行进度和状态的.它的作用可以理解为日志.我们通常可以在程序的某个位置插入计数器,用来记录数据或者进度的变化情况,它比日志更便利进行分析. 例如,我们有一个文件,其中包含如下内容: hello you hello me 它被WordCount程序执行后显示如下日志: 在上图所示中,计数器有19个,分为四个组:File Output Format Counters.FileSystemCounters.File Input Format…
经典版的MapReduce 所谓的经典版本的MapReduce框架,也是Hadoop第一版成熟的商用框架,简单易用是它的特点,来看一幅图架构图: 上面的这幅图我们暂且可以称谓Hadoop的V1.0版本,思路很清晰,各个Client提交Job给一个统一的Job Tracker,然后Job Tracker将Job拆分成N个Task,然后进行分发到各个节点(Node)进行并行协同运行,然后再将各自的运行结果反馈至Job Tracker,进而输出结果. 但是,这种框架有它自身的限制性和局限,我们来简单的…
MapReduce的MapTask任务的运行源码级分析 这篇文章好不容易恢复了...谢天谢地...这篇文章讲了MapTask的执行流程.咱们这一节讲解ReduceTask的执行流程.ReduceTask也有四种任务,可参考前一章节对应的内容,至于Reduce Task要从各个Map Task上读取一片数据,经过排序后,以组为单位交给用户编写的reduce方法,并将结果写入HDFS中. MapTask和ReduceTask都是Task的子类,分别对应于我们常说的map和reduce任务.同上一节一…
第一部分:MapReduce工作原理 MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•TaskTracker:保持JobTracker通信,在分配的数据片段上执行MapReduce任务.提交作业•在作业提交之前,需要对作业进行配置•程序代码,主要是自己书写的MapReduce程序.•输入输出路径•其他配置,如输出压缩等.•配置完成后,通过JobClinet来提交作业的初始化•客户端提交完成后,…
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapReduce - User Interfaces(用户接口) Payload(有效负载) Mapper Reducer Partitioner Counter Job Configuration(作业配置) Task Execution & Environment(任务执行和环境) Memory Man…
时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过,请指教如何能以效率较高的方式学习Hadoop. 我已经记不清圣经<hadoop 实战2>在我手中停留了多久,但是每一页每一章的翻过去,还是在脑壳里留下了点什么. 一段时间以来,我还是通过这本书加深以及纠正了我对于MapReduce.HDFS乃至Hadoop的新的认识.本篇主要介绍MapReduce…
在很多人的眼里,Map-Reduce等于Hadoop,没有Hadoop谈Map-Reduce犹如自上谈兵,实则不然,Map-Reduce是一种计算模型,只是非常适合在并行的环境下运行,Hadoop是Map-Reduce的一种实现,没有Hadoop照样可以跑Map-Reduce程序.python就内置有map()和reduce方法(虽然与hadoop的map-reduce有区别). 这篇文章主要介绍如何用python在linux的管道进行map-reduce编程,本文写的所有map-reduce程…
TaskTracker任务初始化及启动task源码级分析 这篇文章中分析了任务的启动,每个task都会使用一个进程占用一个JVM来执行,org.apache.hadoop.mapred.Child方法是具体的JVM启动类,其main方法中的taskFinal.run(job, umbilical)会启动具体的Task. Task分为两种类型:MapTask和ReduceTask,很明显,前者对应于Map任务,后者对应于Reduce任务.且MapTask分为4种:Job-setup Task.Jo…
一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自…
MapReduce: Simplified Data Processing on Large Clusters MapReduce:面向大型集群的简化数据处理 摘要 MapReduce既是一种编程模型,也是一种与之关联的.用于处理和产生大数据集的实现.用户要特化一个map程序去处理key/value对,并产生中间key/value对的集合,以及一个reduce程序去合并有着相同key的所有中间key/value对.本文指出,许多实际的任务都可以用这种模型来表示. 用这种函数式风格写出的程序自动就…
MapReduce简介 参考自[http://www.cnblogs.com/swanspouse/p/5130136.html] MapReduce定义: MapReduce是一种可用于数据处理的编程框架.MapReduce采用"分而治之"的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果.简单地说,MapReduce就是"任务的分解与结果的汇总". 在分布式计算中,MapReduce框架负责处…
市面上的hadoop权威指南一类的都是老版本的书籍了,索性学习并翻译了下最新版的Hadoop:The Definitive Guide, 4th Edition与大家共同学习. 我们通过提交jar包,进行MapReduce处理,那么整个运行过程分为五个环节: 1.向client端提交MapReduce job. 2.随后yarn的ResourceManager进行资源的分配. 3.由NodeManager进行加载与监控containers. 4.通过applicationMaster与Resou…