P1613 跑路】的更多相关文章

P1613 跑路 176通过 539提交 题目提供者该用户不存在 标签倍增动态规划 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 这个题的数据.. 题意问题 表意 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A…
P1613 跑路 题目描述 小\(A\)的工作不仅繁琐,更有苛刻的规定,要求小\(A\)每天早上在\(6:00\)之前到达公司,否则这个月工资清零.可是小\(A\)偏偏又有赖床的坏毛病.于是为了保住自己的工资,小\(A\)买了一个十分牛B的空间跑路器,每秒钟可以跑\(2^k\)千米(\(k\)是任意自然数).当然,这个机器是用\(long\) \(int\)存的,所以总跑路长度不能超过\(max\) \(long\) \(int\)千米.小\(A\)的家到公司的路可以看做一个有向图,小\(A\)…
P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据保…
P1613 跑路 题目大意: 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据…
P1613 跑路 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司.数据保…
题目链接:P1613 跑路 题意 给定包含 \(n\) 个点和 \(m\) 条边的有向图,每条边的长度为 \(1\) 千米.每秒钟可以跑 \(2^k\) 千米,问从点 \(1\) 到点 \(n\) 最少需几秒. 思路 倍增 DP Floyd 令 \(dp[i][j][k]\) 表示从 \(i\) 到 \(j\) 是否存在长度为 \(2^k\) 的路径. 那么如果 \(dp[i][t][k - 1]\) 和 \(dp[t][j][k - 1]\) 都为 \(1\) 则 \(dp[i][j][k]\…
P1613 跑路(倍增) 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司…
[Luogu]P1613 跑路 一.题目 题目描述 小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零.可是小A偏偏又有赖床的坏毛病.于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数).当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米.小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米.小A想每天能醒地尽量晚,所以让你帮他算算,他最少需…
题面 传送门:https://www.luogu.org/problemnew/show/P1613 Solution 挺有意思的一道题. 题面已经挺明显的描述出了这题的主要思想:倍增. 先这样想,我们可以把这题这样建模:有一堆点,若两个点之间的距离之和可以达到2的n次方,那么这两个点可以用1的时间相互到达. 也就是说,我们把距离能为2的n次方的点对用边权为1的边连上,再做一次最短路径,就可以求出答案了. 接下来问题就是如何求出每两个点是否能以2的n次方的时间相互到达. 考虑使用DP. 我们设f…
[题解]P1613 鸽王跑路 一道思维好题! 考虑\(2^k\)的传递性.直接64遍\(floyd\)求所有\(2^k\)的路径,转移方程是 \(dp(i,j,k)=[dp[i][t][k-1]\)&&\(dp[t][j]][k-1]\) 有了这个之后先\(O(n^3)\)预处理,然后根据这样的数组直接建边跑最短路即可. #include<iostream> #include<cstring> #include<algorithm> #include&l…