机器学习——GBDT】的更多相关文章

基础概念 GBDT(Gradient Boosting Decision Tree) 全称梯度提升决策树,是一种迭代的决策树算法.GBDT是集成学习Boosting的家族成员,GBDT中的树是回归树,用于回归预测,调整后也可以用于分类. 分类树与回归树的差异 分类树大致的实现过程是:穷举每一个属性特征的信息增益值,每一次都选取使信息增益最大(或信息增益比,基尼系数等)的特征进行分枝,直到分类完成或达到预设的终止条件,实现决策树的递归构建. 回归树的实现过程与分类树大体类似,在划分标准上回归树使用…
参考: 陈天奇slides :   https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf Friedman GBDT 论文:  http://ishare.down.sina.com.cn/28081146.pdf?ssig=NHjGnmOrHr&Expires=1514088754&KID=sina,ishare&ip=&fn=Greedy+function+approximation+A+gradient…
目录 xgboost CART(Classify and Regression Tree) GBDT(Gradient Boosting Desicion Tree) GB思想(Gradient Boosting) DT树(Desicion Tree) 横空出世的前向分步算法 GB再解释 GBDT 大BOSS--xgboost 训练xgboost xgboost模型 目标函数 正则化项处理 理论终章 最终章-拨开云雾见月明 多说一嘴 xgboost xgboost是一个监督模型,它对应的模型就是…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/34 本文地址:http://www.showmeai.tech/article-detail/195 声明:版权所有,转载请联系平台与作者并注明出处 引言 之前ShowMeAI对强大的boosting模型工具XGBoost做了介绍(详见ShowMeAI文章图解机器学习 | XGBoost模型详解).本篇我们来学习一下GBDT模型(详见ShowMeAI文章 图解机器学习 | GBDT模…
GBDT算法是一种监督学习算法.监督学习算法需要解决如下两个问题: 1.损失函数尽可能的小,这样使得目标函数能够尽可能的符合样本 2.正则化函数对训练结果进行惩罚,避免过拟合,这样在预测的时候才能够准确. GBDT算法需要最终学习到损失函数尽可能小并且有效的防止过拟合. 以样本随时间变化对某件事情发生的变化为例,如下几副图形象的说明了机器学习的作用. 假设随着时间的变化对K话题存在如下样本: 如果没有有效的正则化,则学习结果会如下图所示: 这种情况下,学习结果跟样本非常符合,损失函数也非常小,但…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝…
前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 美国金融银行业的大数据算法:随机森林模型+综合模型 模型组合(比如说有Boosting,Bagging等)与决策树相关的算法比较多,这些算法最终的结果是生成N(可能会有几百棵以上)棵树,这样可以大大的减少单决策树带来的毛病,有…
gbdt(又称Gradient Boosted Decision Tree/Grdient Boosted Regression Tree),是一种迭代的决策树算法,该算法由多个决策树组成.它最早见于yahoo,后被广泛应用在搜索排序.点击率预估上. xgboost是陈天奇大牛新开发的Boosting库.它是一个大规模.分布式的通用Gradient Boosting(GBDT)库,它在Gradient Boosting框架下实现了GBDT和一些广义的线性机器学习算法. 本文首先讲解了gbdt的原…
机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时, 单决策树又有一些不好的地方,比如说容易over-fitting,虽然有…
作者:JSong, 日期:2017.10.10 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,常可获得比单一学习器显著优越的泛化性能,这对"弱学习器"尤为明显. 目前,有三种常见的集成学习框架:bagging,boosting和stacking.第一种是并行的,各个基学习器之间不存在强依赖关系,代表是随机森林算法.后两者是串行的,基学习器之间存在强依赖关系,必须串行生成.具体可参见我的文章 机器学习|集成学习. 1.前向分步算法(forward…