创建数组有两种方式,1.直接赋值 2.随机变量生成随机生成包括4种:np.arange(20),np.linspace(0,10,5),np.logspace(0,2,5),np.random.random(3,2,3)np.arange(10,20,2) ##左闭右开区间,起始值,终止值,步长np.linspace(0,10,5) ##闭区间,起始值,终止值,元素个数 等差数列np.logspace(0,2,5) ##闭区间,起始值(以指数形式存在),终止值(以指数形式存在, 以10为底,2的…
python通过post提交数据的方法 本文实例讲述了python通过post提交数据的方法.分享给大家供大家参考. 具体实现方法如下:     # -*- coding: cp936 -*- import urllib2 import urllib def postHttp(name=None,tel=None,address=None,        price=None,num=None,paytype=None,        posttype=None,other=None):   u…
背景 看到这个标题你可能想一个分块能有什么难度?还值得细说吗,最近确实遇到一个有意思的分块函数,写法比较巧妙优雅,所以写一个分享. 日前在做需求过程中有一个对大量数据分块处理的场景,具体来说就是几十万量级的数据,分批处理,每次处理100个.这时就需要一个分块功能的代码,刚好项目的工具库中就有一个分块的函数.拿过函数来用,发现还挺好用的,传入列表和分块大小,然后就能遍历取出分好的数据.调用方式如下: from xxx import chunk_fun chunk_list = chunk_fun(…
近期碰到一个问题,两套系统之间数据同步出了差错,事后才发现的,又不能将业务流程倒退,但是这么多数据手工处理量也太大了,于是决定用Python偷个小懒. 1.首先分析数据. 两边数据库字段的值都是一样,先将这边数据库的数据查询导出,正好是2列120多行的数据.那么目标就是拼接成update from_name set data= where id= 格式,将导出内容中的第1列和第2列内容放到等号=后面即可. 2.下面开始动手. 前提肯定是要有一个python环境的,没有的去下载安装一个也很快.有了…
Spyder   Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把trai…
本博主要总结DaraFrame数据筛选方法(loc,iloc,ix,at,iat),并以操作csv文件为例进行说明 1. 数据筛选 a b c (1)单条件筛选 df[df[] # 如果想筛选a列的取值大于30的记录,但是之显示满足条件的b,c列的值可以这么写 df[[] # 使用isin函数根据特定值筛选记录.筛选a值等于30或者54的记录 df[df.a.isin([, ])] (2)多条件筛选 可以使用&(并)与| (或)操作符或者特定的函数实现多条件筛选 # 使用&筛选a列的取值大…
数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解. Matplotlib 是一个流行的 Python 库,可以用来很简单地创建数据可视化方案.但每次创建新项目时,设置数据.参数…
这篇文章主要介绍了使用Python从网上爬取特定属性数据保存的方法,其中解决了编码问题和如何使用正则匹配数据的方法,详情看下文     编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了.问题要从文字的编码讲起.原本的英文编码只有0~255,刚好是8位1个字节.为了表示各种不同的语言,自然要进行扩充.中文的话有GB系列.可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?Unicode 是一种编码方案,又称万国码,可见其包含之广.但是具体存储到…
数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常重要的,因为你的受众往往是非技术型客户,只有这样他们才可以理解. Matplotlib 是一个流行的 Python 库,可以用来很简单地创建数据可视化方案.但每次创建新项目时,设置数据.参数…
如何在列表,字典,集合中根据条件刷选数据 说明: 本文分析的类型: 列表 字典 集合 结合每种类型筛选数据的方法的不同,区分出方法间的差异. 一.列表案例 需求:过滤掉列表中的负数. li = [1,5,-3,-1,0,9,-10,10] 1.通用方法:迭代列表获取列表中的每个元素进行选择 代码: li = [1, 5, -3, -1, 0, 9, -10, 10] ret = [] for i in li: if i >= 0: ret.append(i) print(ret) 2.filte…