提出了模型和损失函数 论文名称:扩展卷积密集连接神经网络用于时域实时语音增强 论文代码:https://github.com/ashutosh620/DDAEC 引用:Pandey A, Wang D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]//ICASSP 2020-2020 IEEE Internati…
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et al. WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement[J]. IEEE Signal Processing Letters, 2020, 27: 2149…
论文地址:两阶段深度网络的解耦幅度和相位优化 论文代码: 引用格式:Li A, Liu W, Luo X, et al. ICASSP 2021 deep noise suppression challenge: Decoupling magnitude and phase optimization with a two-stage deep network[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Spee…
我醉了呀,当我花一天翻译完后,发现已经网上已经有现成的了,而且翻译的比我好,哎,造孽呀,但是他写的是论文笔记,而我是纯翻译,能给读者更多的思想和理解空间,并且还有参考文献,也不错哈,反正翻译是写给自己看的 文章方向:语音分离, 论文地址:Conv-TasNet:超越理想的语音分离时频幅度掩蔽 博客地址:https://www.cnblogs.com/LXP-Never/p/14769751.html 论文代码:https://github.com/naplab/Conv-TasNet | htt…
论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware composite deep neural network for speech enhancement[J]. Speech Communication,2022,136:1-13. 摘要 目前,利用深度神经网络(DNN)进行语音增强的大多数方法都面临着一些限制:它们没有利用相位谱中的信息,同时它们的高计算…
论文作者:Xiang Hao, Xiangdong Su, Radu Horaud, and Xiaofei Li 翻译作者:凌逆战 论文地址:Fullsubnet:实时单通道语音增强的全频带和子频带融合模型 代码:https://github.com/haoxiangsnr/FullSubNet 摘要 本文提出了一种用于单通道实时语音增强的全频带和子频带融合模型FullSubNet.全频带和子频带是指分别输入全频带和子频带噪声频谱特征,输出全频带和子频带语音目标的模型.子带模型独立处理每个频率…
论文地址:TCNN:时域卷积神经网络用于实时语音增强 论文代码:https://github.com/LXP-Never/TCNN(非官方复现) 引用格式:Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE International Conference on Ac…
论文地址:https://arxiv.53yu.com/abs/2106.07577 基于 F-T-LSTM 复杂网络的联合声学回声消除和语音增强 摘要 随着对音频通信和在线会议的需求日益增加,在包括噪声.混响和非线性失真在内的复杂声学场景下,确保声学回声消除(AEC)的鲁棒性已成为首要问题.尽管已经有一些传统的方法考虑了非线性失真,但它们对于回声抑制仍然效率低下,并且在存在噪声时性能会有所衰减.在本文中,我们提出了一种使用复杂神经网络的实时 AEC 方法,以更好地建模重要的相位信息和频率时间…
论文地址:https://graz.pure.elsevier.com/en/publications/acoustic-echo-cancellation-with-cross-domain-learning 具有跨域学习的声学回声消除 摘要: 本文提出了跨域回声控制器(CDEC),提交给 Interspeech 2021 AEC-Challenge.该算法由三个构建块组成:(i) 时延补偿 (TDC) 模块,(ii) 基于频域块的声学回声消除器 (AEC),以及 (iii) 时域神经网络 (…
论文地址:基于分层递归神经网络的嵌入式设备轻量化在线降噪 引用格式:Schröter H, Rosenkranz T, Zobel P, et al. Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks[J]. arXiv preprint arXiv:2006.13067, 2020. 摘要 基于深度学习的降噪算法已经证明了它们的成功,尤其是对非平…