首发于我的gitpages博客 https://helenawang.github.io/2018/10/10/代码相似度计算框架调研 代码相似度计算框架调研 研究现状 代码相似度计算是一个已有40年研究历史的问题了.它的应用范围广泛,主要包括代码抄袭检测[3].软件维护中的相似代码查找等. Whale[1]于1988年首次提出一个代码相似性检测的通用框架和步骤,将检测过程分为以下两个阶段: 代码格式转换 + 相似度确定 后来很多检测方法都参考这一框架,并将检测过程细分为四个部分: 预处理 ->…
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from gensim import corpora,models,similarities import codecs def cut_words(file): with open(file, 'r',encoding="utf-8") as f: text = f.read() words = j…
在文本聚类.文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算.这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn.        希望文章对你有所帮助,相关文章如下:        [python爬虫] Selenium获取百度百科旅游景点的InfoBox消息盒        Python简单实现基于VSM的余弦相似度计算        基于VSM的命名实体识别.歧义消解和指代消解        [python] 使用Jieba工具中文分词及文…
编译最近的协同过滤算法皮尔逊相似度计算.下顺便研究R简单使用的语言.概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 由于这里每一个数都是等概率的.所以就当做是数组或向量中全部元素的平均数吧.能够使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance整体方差和sample variance样本方差,差别是整体方差除以N,样本方差除以N-1. 数理统计中经常使用样本方差,R语言的var()函数计算的也是样本…
整理了一下最近对协同过滤推荐算法中的皮尔森相似度计算,顺带学习了下R语言的简单使用,也复习了概率统计知识. 一.概率论和统计学概念复习 1)期望值(Expected Value) 因为这里每个数都是等概率的,所以就当做是数组或向量中所有元素的平均数吧.可以使用R语言中函数mean(). 2)方差(Variance) 方差分为population variance总体方差和sample variance样本方差,区别是总体方差除以N,样本方差除以N-1. 数理统计中常用样本方差,R语言的var()…
对于我这种习惯了 Java 这种编译型语言,在使用 Python 这种动态语言的时候,发现错误经常只能在执行的时候发现,总感觉有点不放心. 而且有一些错误由于隐藏的比较深,只有特定逻辑才会触发,往往导致需要花很多时间才能将语法错误慢慢排查出来.其实有一些错误是很明显的,假如能在写程序的时候发现这些错误,就能提高工作效率. 这时候 Python 静态语法检查工具就出现了. pep8/pycodestyle   PEP(Python Enhancement Proposal)的缩写,翻译过来就是 P…
在知识图谱构建阶段的实体对齐和属性值决策.判断一篇文章是否是你喜欢的文章.比较两篇文章的相似性等实例中,都涉及到了向量空间模型(Vector Space Model,简称VSM)和余弦相似度计算相关知识.        这篇文章主要是先叙述VSM和余弦相似度相关理论知识,然后引用阮一峰大神的例子进行解释,最后通过Python简单实现百度百科和互动百科Infobox的余弦相似度计算. 一. 基础知识 第一部分参考我的文章: 基于VSM的命名实体识别.歧义消解和指代消解 第一步,向量空间模型VSM …
1.余弦相似度可用来计算两个向量的相似程度 对于如何计算两个向量的相似程度问题,可以把这它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向.两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同.线段重合:如果夹角为90度,意味着形成直角,方向完全不相似:如果夹角为180度,意味着方向正好相反.因此,我们可以通过夹角的大小,来判断向量的相似程度.夹角越小,就代表越相似. 以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ.余弦定理告诉我们,可以用下…
#定义几种距离计算函数 #更高效的方式为把得分向量化之后使用scipy中定义的distance方法 from math import sqrt def euclidean_dis(rating1, rating2): #欧式距离计算 """计算2个打分序列间的欧式距离. 输入的rating1和rating2都是打分dict 格式为{'小时代4': 1.0, '疯狂动物城': 5.0}""" distance = 0 commonRatings =…
http://www.douban.com/note/319219518/?type=like win7基于mahout推荐之用户相似度计算 2013-12-03 09:19:11    事情回到半年前,我想做关于推荐系统的东西,结果看到了强大的apache mahout,然后各种安装linux,hadoop,apache,mahout,taste,结局是,一个星期的努力,失败....linux实在是hold不住啊,最后放弃了,可是最近计算用户相似度,实在是喜欢mahout 的开源,硬着头皮使用…