DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练.从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗憾没有看到论文是否验证了topmost 的hidden representation 是否也和softmax指导产生的representation一样的discriminative. DeepLDA和一般的deep network唯一不同是它的loss function.两者对比如下: 对于LDA,…
1.难点-如何实现高效的通信 我们考虑下列的多任务优化问题: \[ \underset{\textbf{W}}{\min} \sum_{t=1}^{T} [\frac{1}{m_t}\sum_{i=1}^{m_t}L(y_{ti}, \langle \bm{w}_t, \bm{x}_{ti} \rangle)]+\lambda \text{pen}(\textbf{W}) \tag{1} \] 这里\(\text{pen}(\mathbf{W})\)是一个用于增强group sparse的正则项…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
论文提出了一种联合细胞分割和跟踪方法,利用细胞segmentation proposals创建有向无环图,然后在该图中迭代地找到最短路径,为单个细胞提供分割,跟踪和事件. 3. PROPOSAL GENERATION 论文的方法的第一个阶段是proposal generation,目标是生成大量的segmentation proposals,使其具有较高的recall.segmentation proposals生成的主要步骤:首先,从背景中分割单元:第二,blob detection用于检测单…
YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YOLO已经发布了两个版本,在下文中分别称为YOLO V1和YOLO V2.YOLO V2的代码目前作为Darknet的一部分开源在GitHub.在这篇博客中,记录了阅读YOLO两个版本论文中的重点内容,并着重总结V2版本的改进. Update@2018/04: YOLO v3已经发布!可以参考我的博客…
[论文阅读] RNN 在阿里DIEN中的应用 0x00 摘要 本文基于阿里推荐DIEN代码,梳理了下RNN一些概念,以及TensorFlow中的部分源码.本博客旨在帮助小伙伴们详细了解每一步骤以及为什么要这样做. 0x01 背景知识 1.1 RNN RNN,循环神经网络,Recurrent Neural Networks. 人们思考问题往往不是从零开始的,比如阅读时我们对每个词的理解都会依赖于前面看到的一些信息,而不是把前面看的内容全部抛弃再去理解某处的信息.应用到深度学习上面,如果我们想要学习…
BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 阅读编写. 1 引言 两种为下游任务应用预训练模型表示的现存策略 基于特征 e.g. ELMo:使用包括预训练表示作为额外特征的特定任务架构 精调 e.g. GPT Generative Pre-trained Transformer 引入最少的特定任务参数 这两种策略都使用了单一方向语言模型 限…
Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/You_Action4D_Online_Action_Recognition_in_the_Crowd_and_Clutter_CVPR_2019_paper.pdf 摘要 在拥挤杂乱的环…
深度学*点云语义分割:CVPR2019论文阅读 Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning 摘要 本文提出了一个新的超级学*框架,用于将三维点云过度分割为超点.本文将此问题转化为学*三维点的局部几何和辐射测量的深度嵌入,从而使物体边界呈现高对比度.嵌入计算使用轻量级神经网络在点的局部邻域上操作.最后,本文将点云过分集描述为一个与学*嵌入相关的图划分问题.这种新方法允许本文在密集的室内数据集(S3D…
<Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shifting Networks>论文阅读 (i)问题背景: 工业界的推荐系统/广告系统现在都会用embedding技术生成物品/用户的向量.通俗点讲就是build一个向量嵌入层,把带有原始特征的输入向量转换成一个低维度的dense向量表示.推荐系统的模型一般有向量嵌入层和深度模型层两部分组成,向量嵌入层的…