[点击了解更多大数据知识] 市场的变幻,政策的完善,技术的革新--种种因素让我们面对太多的挑战,这仍需我们不断探索.克服. 今年,网易数帆将持续推出新栏目「金融专家说」「技术专家说」「产品专家说」等,聚集数帆及合作伙伴的数字化转型专家天团,聚焦大数据.云原生.人工智能等科创领域,带来深度技术解读及其在各行业落地应用等一系列知识分享,为企业数字化转型成功提供有价值的参考. 今天由网易数帆大数据离线技术专家尤夕多带来能帮助标准化企业级离线数仓优化存储,提高性能,且已在网易内部实践验证过的成熟技术方案…
数字化与数字生态建设,是当前所有企业成长发展的必经之路.随着"加强新型基础设施建设"第一次被写入政府工作报告,5G.人工智能.工业互联网.智慧城市等新型基建彻底激发了数字的价值. 不过与数字世界蓬勃发展伴生而来的,是以指数形态爆炸增长的数据体量.在新基建中扮演重要角色的 5G.物联网.区块链等技术也蕴藏着丰富的诸如人.设备.车辆等流动变化且相互关联的数据,使得数据的来源.种类.结构.关联等因素都变得更为复杂,这也为数据分析的工作增加了不少难度. 并且在数据体量增长和数据种类丰富的同时,…
前几天建了一个数据仓库方向的小群,收集了大家的一些问题,其中有个问题,一哥很想去谈一谈--现在做传统数仓,如何快速转到大数据数据呢?其实一哥知道的很多同事都是从传统数据仓库转到大数据的,今天就结合身边的同事经历来一起分享一下. 数据仓库 数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果.也就是说,数据仓库汇总有可能有很多维度数据的统计分析结果,取百家之长(各个数据源的数据),…
企业级数仓架构设计与选型的时候需要从开发的便利性.生态.解耦程度.性能. 安全这几个纬度思考.本文作者:惊帆 来自于数据平台 EMR 团队 前言 Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念.Hive 有 JDBC 客户端,支持标准 JDBC 接口访问的 HiveServer2 服务器,管理元数据服务的 Hive Metastore,以及任务以 MapReduce 分布式任务运行在…
--临时工作负载优化   即席查询:也就是查询完没放到Cache当中,每次查询都要重新经过编译,并发高的时候很耗性能: 参数化查询: 一方面解决了重编译问题,但随着数据库数据数据的变更,统计信息的更新,可能缓存里的缓存计划已经不是查询优化器想要的结果: Above  SQL server 2008: Optimize For Ad Hoc Workloads 第一次adhoc查询时候,cache会缓存一个存根的执行计划,本质上是一个300字节的标记,告诉SQLserver这个查询已经跑过了一次:…
数仓分层 ODS:Operation Data Store原始数据 DWD(数据清洗/DWI) data warehouse detail数据明细详情,去除空值,脏数据,超过极限范围的明细解析具体表 DWS(宽表-用户行为,轻度聚合) data warehouse service ----->有多少个宽表?多少个字段服务层--留存-转化-GMV-复购率-日活点赞.评论.收藏; 轻度聚合对DWD ADS(APP/DAL/DF)-出报表结果 Application Data Store做分析处理同步…
前言 近期, 全球权威IT咨询机构Forrester发布"The Forrester Wave: CloudData Warehouse Q4 2018"研究报告,阿里巴巴分析型数据库(AnalyticDB)成功入选. AnalyticDB作为阿里巴巴自主研发的PB级实时云数据仓库,全面兼容MySQL协议以及SQL:2003 语法标准,可以毫秒级针对万亿级数据进行即时的多维分析透视和业务探索,帮客户将整个数据分析和价值化从传统的离线分析带到下一代的在线实时分析模式.本文将深入解读Ana…
前言近期, 全球权威IT咨询机构Forrester发布"The Forrester WaveTM: CloudData Warehouse Q4 2018"研究报告,阿里巴巴分析型数据库(AnalyticDB)成功入选 !AnalyticDB作为阿里巴巴自主研发的PB级实时云数据仓库,全面兼容MySQL协议以及SQL:2003 语法标准,可以毫秒级针对万亿级数据进行即时的多维分析透视和业务探索,帮客户将整个数据分析和价值化从传统的离线分析带到下一代的在线实时分析模式.本文将深入解读An…
在数据仓库建设中,元数据管理是非常重要的环节之一.根据Kimball的数据仓库理论,可以将元数据分为这三类: 技术元数据,如表的存储结构结构.文件的路径 业务元数据,如血缘关系.业务的归属 过程元数据,如表每天的行数.占用HDFS空间.更新时间 而基于这3类元数据"搭建"起来的元数据系统,通常又会实现如下核心功能: 1. 血缘关系 如表级别/字段级别的血缘关系,这些主要体现在我们日常的SQL和ETL任务里. 2. 大数据集群计算资源管理 针对利用不同的计算引擎如Spark/Flink/…
前言 datalake架构 离线数据 ODS -> DW -> DM https://www.jianshu.com/p/72e395d8cb33 https://www.cnblogs.com/wang3680/p/11538451.html https://blog.csdn.net/hello_java_lcl/article/details/107025192 ODS层的逻辑主要是做隔离和部分清洗 实时数据 名词解释 名词 描述 源表 数据清洗之前的原始数据表 目标表 数据清洗之后的表…