一.scikit-learn概述 1.sklearn模型   sklearn全称是scikit-learn,它是一个基于Python的机器学习类库,主要建立在NumPy.Pandas.SciPy和Matplotlib等类库之上,基本上覆盖了常见了分类.回归.聚类.降维.模型选择和预处理模块. 2.sklearn源码 下图是sklearn在GitHub上的源代码,编程语言主要包括:91.4%的Python,6.5%的Cython,1.3%的C++和0.8%的Other.如下所示: 二.模型选择和预…
一.概述 参考博客:https://www.cnblogs.com/yszd/p/8529704.html 二.代码实现[解析解] import numpy as np import matplotlib.pyplot as plt __author__ = 'zhen' # 这里相当于是随机X维度X1,rand是随机均匀分布 X = 2 * np.random.rand(100, 1) # 人为的设置真实的Y一列,np.random.randn(100, 1)是设置error,randn是标准…
import numpy as np  # 导入科学技术框架import matplotlib.pyplot as plt  # 导入画图工具from sklearn.linear_model import LinearRegression  # 导入sklearn机器学习库 x = 3 * np.random.rand(100, 1)y = 3 + 4 * x + np.random.rand(100, 1) # 创建线性回归对象lin_reg = LinearRegression()# 训练…
0.引言  利用机器学习的方法训练微笑检测模型,给一张人脸照片,判断是否微笑:   使用的数据集中69张没笑脸,65张有笑脸,训练结果识别精度在95%附近: 效果: 图1 示例效果 工程利用python 3 开发,借助Dlib进行 人脸嘴部20个特征点坐标(40维特征)的提取, 然后根据这 40维输入特征 和 1维特征输出(1代表有微笑 / 0代表没微笑)进行ML建模, 利用几种机器学习模型进行建模,达到一个二分类(分类有/无笑脸)的目的,然后分析模型识别精度和性能,并且可以识别给定图片的人脸是…
用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn joblib 2.寻找数据来源 3.分析数据源网址规则 4.分析页面规则 项目地址 github项目:PYWeatherReport 系列教程 机器学习参考篇: python+sklearn+kaggle机器学习 用python+sklearn(机器学习)实现天气预报 准备 用python+sklea…
机器学习算法及代码实现–K邻近算法 1.K邻近算法 将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近的k个训练样本,其中哪个训练样本类别占比最大,我们就认为它是该测试样本所属的类别. 2.算法步骤: 1)为了判断未知实例的类别,以所有已知类别的实例作为参照 2)选择参数K 3)计算未知实例与所有已知实例的距离 4)选择最近K个已知实例 5)根据少数服从多数的投票法则(majority-voting…
用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型评估结果 d.用joblib模块保存模型 e.封装 2.总控 代码 使用方法 3.最后效果 项目地址 github项目:PYWeatherReport 系列教程 机器学习参考篇: python+sklearn+kaggle机器学习 用python+sklearn(机器学习)实现天气预报 准备 用py…
用python+sklearn机器学习实现天气预报 数据 项目地址 系列教程 勘误表 0.前言 1.爬虫 a.确认要被爬取的网页网址 b.爬虫部分 c.网页内容匹配取出部分 d.写入csv文件格式化 e.封装成类 2.数据预处理 项目地址 github项目:PYWeatherReport 系列教程 机器学习参考篇: python+sklearn+kaggle机器学习 用python+sklearn(机器学习)实现天气预报数据 数据 用python+sklearn(机器学习)实现天气预报 准备 用…
我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一…
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性.图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变.对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理…