KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度: KL散度公式为:…
Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two…
转自:KL距离,Kullback-Leibler Divergence   KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异情况.其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特.我们用D(P||Q)表示KL距离,计算公式如下: 注:当两个分布比较接近时…
http://www.cnblogs.com/ywl925/p/3554502.html http://www.cnblogs.com/hxsyl/p/4910218.html http://blog.csdn.net/acdreamers/article/details/44657745 KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异…
原文地址: https://www.cnblogs.com/nlpowen/p/3620470.html ----------------------------------------------------------------------------------------------- KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布…
自信息量I(x)=-log(p(x)),其他依次类推. 离散变量x的熵H(x)=E(I(x))=-$\sum\limits_{x}{p(x)lnp(x)}$ 连续变量x的微分熵H(x)=E(I(x))=-$\int{p(x)lnp(x)dx} $ 条件熵H(y|x)=-$\int\int{p(x,y)lnp(y|x)dydx}$ 两个变量X和 Y 的联合熵定义为: H(X,Y)=-$\int\int{p(x,y)lnp(x,y)dxdy}$ H(x,y)=H(y|x)+H(x) 若x,y独立,H…
KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy).它衡量的是相同事件空间里的两个概率分布的差异情况.其物理意义是:在相同事件空间里,概率分布P(x)对应的每个事件,若用概率分布 Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特.我们用D(P||Q)表示KL距离,计算公式如下: 当两个概率分布完全相同时,即P(X)=Q(X),其相对熵为0 .我们知道,概率分布P(X)的信…
算法任务: 1. 给定一个文件,统计这个文件中所有字符的相对频率(相对频率就是这些字符出现的概率——该字符出现次数除以字符总个数,并计算该文件的熵). 2. 给定另外一个文件,按上述同样的方法计算字符分布的概率,然后计算两个文件中的字符分布的KL距离. (熵和KL距离都是NLP自然语言处理中术语,仅仅是涉及到一两个公式而已,不影响您对代码的理解,so just try!) 说明: 1. 给定的文件可以是两个中文文件或两个英文文件,也可以是两个中英文混合文件.对于中文,计算字符,对于英文,计算词.…
DNN中最常使用的离散数值优化目标,莫过于交差熵.两个分布p,q的交差熵,与KL距离实际上是同一回事. $-\sum plog(q)=D_{KL}(p\shortparallel q)-\sum plog(p)$ 交差熵实际上就是KL距离减去熵. 监督学习时,p是目标的分布,无法被改变,能通过训练改变的只有拟合出的分布q,所以loss需要最小化交差熵的时候,实际上就是在最小化KL距离. 熟悉KL距离定义的话,就知道交差熵实际上是要求p与q分布尽量接近,这样就能使用相近的bit数来编码信息. 前面…
在学习深度学习过程中很多讲的不够细致,这个讲的真的是透彻了,转载过来的,希望更多人看到(转自-张贤同学-公众号). 前言 本文翻译自 http://jalammar.github.io/illustrated-transformer ,是笔者看过的把 Transformer 讲解得最好的文章.这篇文章从输入开始,一步一步演示了数据在 Transformer 中的流动过程.由于看过一些中文翻译的文章,感觉不够好,所以我自己翻译了一个版本,在一些难以直译的地方,我加入了一些原文没有的文字说明,来更好…