bzoj2186】的更多相关文章

[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 \(gcd(x,y)=gcd(x+ky,y)\) 所以,相当于 每隔\(m!\),答案增长的值都是\(\varphi(m!)\) 所以 我们可以得出 \[ans=\frac{n!}{m!}\varphi(m!)\] 后面的\(\varphi\)可以直接拆开,枚举质因数 \[ans=\frac{n!}…
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中所有质数.那么这个前缀积就可以预处理了. 当n.m大于p的时候是可能有问题的,数据里没有就懒得讨论了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include&…
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,…
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆元 p[i]-1 处理一下前缀积inv[x]= 然后答案就是N!*inv[x] /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #inc…
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数据极限范围内所有的逆元崩出来就行了... ... 最后,附上丑陋的代码... ... #include <stdio.h> #define LL long long int prim[5000001],n,m,t,p,env[10000001],fac[10000001],f[10000001],…
[BZOJ2186]沙拉公主的困惑 题面 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m&l…
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) \times N!} {M!}$.欧拉函数并不是完全积性函数,所以$M!$的欧拉函数值并不能很容易的求出来.但是根据欧拉函数的式子,可以发现$\phi (M!)$的值其实也可以预处理出来,即$\phi(M!)=M! \prod\limits ^{P_i \in [2,M]} (1-\frac{1}…
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n Outp…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非…
欧拉函数:一般记作φ(n),表示1-n中与n互质的数的数量. 欧拉函数是积性函数,即φ(m*n)=φ(m)*φ(n) //这条定理基友面试时还遇到了= = 欧拉函数的值φ(n)=n*(1-p[1])*(1-p[2])*...*(1-p[n]) //p[i]是小于等于n的所有素数 若n是m的倍数,则小于等于n且与m互质的数的个数为(n/m)*φ(m) //证明不难理解:设k小于等于m且与m互质,则k+m.k+2m......也与m互质 若n是质数p的k次幂,则φ(n)=(p-1)*(p^(k-1)…