首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
动态规划(斜率优化):SPOJ Commando
】的更多相关文章
【学习笔记】动态规划—斜率优化DP(超详细)
[学习笔记]动态规划-斜率优化DP(超详细) [前言] 第一次写这么长的文章. 写完后感觉对斜优的理解又加深了一些. 斜优通常与决策单调性同时出现.可以说决策单调性是斜率优化的前提. 斜率优化 \(DP\),顾名思义就是利用斜率相关性质对 \(DP\) 进行优化. 斜率优化通常可以由两种方式来理解,需要灵活地运用数学上的数形结合,线性规划思想. 对于这样形式的 \(dp\) 方程:\(dp[i]=Min/Max(a[i]∗b[j]+c[j]+d[i])\),其中 \(b\) 严格单调递增. 该方…
[bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[i]=max{f[j]+cal(sum[i]-sum[j])} 其中j<i,且cal(x)=a*x*x+b*x+c 那么设转移方程中的式子为V 若i<j,且V(j)>V(i) 那么,f[j]-f[i]+a*sum[j]^2-a*sum[i]^2+b*(sum[i]-sum[j])>2*…
[bzoj1597][usaco2008 mar]土地购买 (动态规划+斜率优化)
Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些…
[luogu3648][bzoj3675][APIO2014]序列分割【动态规划+斜率优化】
题目大意 让你把一个数列分成k+1个部分,使分成乘积分成各个段乘积和最大. 分析 首先肯定是无法开下n \(\times\) n的数组,那么来一个小技巧:因为我们知道k的状态肯定是从k-1的状态转移过来的,而且只从k-1的状态转移过来,那么我们就记录一下k-1和k的状态. 然后我们再来动态规划: 状态肯定是:\(f[i]\)表示前i个数,分成j段(j枚举,滚动数组优化成n). 转移方程就是: \[f[i]=max(g[j]+sum[j]\times(sum[i]-sum[k]))\] 一开始看错…
动态规划(斜率优化):BZOJ 3675 [Apio2014]序列分割
Description 小H最近迷上了一个分割序列的游戏.在这个游戏里,小H需要将一个长度为N的非负整数序列分割成k+l个非空的子序列.为了得到k+l个子序列, 小H将重复进行七次以下的步骤: 1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的 序列一一也就是一开始得到的整个序列): 2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新 序列. 每次进行上述步骤之后,小H将会得到一定的分数.这个分数为两个新序 列中元素和的乘积.小H希望选择一种最佳的分割方案,使得k…
动态规划(斜率优化):BZOJ 1010 【HNOI2008】 玩具装箱
玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8218 Solved: 3233[Submit] Description P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的. 同时如果一个一维…
BZOJ 1096: [ZJOI2007]仓库建设(动态规划+斜率优化)
第一次写斜率优化,发现其实也没啥难的,没打过就随便找了一份代码借(chao)鉴(xi)下,不要介意= = 题解实在是懒得写了,贴代码吧= = CODE: #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;#define maxn 1000010long long f[maxn],x[maxn],sum[maxn],sum1[max…
UOJ#104. 【APIO2014】Split the sequence 动态规划 斜率优化
原文链接www.cnblogs.com/zhouzhendong/p/UOJ104.html 题解 首先证明一个结论:对于一种分割方案,分割的顺序不影响最终结果. 证明:对于树 a[x] 和 a[y] ,如果 x 与 y 之间有分割,那么它们对答案的贡献就是 a[x] * a[y] ,否则无贡献. 于是问题转化成 DP: 设 dp[i][j] 表示把前 j 个数分成 i 段的最大收益,那么: 设 $$s[k] = \sum_{i=1}^{k} a[i]$$ $$dp[i][j] = \max_{…
[luogu4072][bzoj4518][SDOI2016]征途【动态规划+斜率优化】
题目分析 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小. 帮助Pine求出最小方差是多少. 分析 比较简单的斜率优化. \[f[i][j]=min(f[k][j-1]+m(sum[i]-sum[j])^3-s\times s_n(s_i-s_j))\…
[luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】
题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考虑\(O(n^2)\)的暴力DP. 定义状态\(f[i]\)表示最后一段的结尾是\(i\)的最大答案. 那么枚举j,得到转移方程为\(f[i]=max(f[i],f[j]+a\times (sum[i]-sum[j])^2+b\times(sum[i]-sum[j])+c\) 注意这里的转移方程不是…