uva 1416 Warfare And Logistics】的更多相关文章

题意: 给出一个无向图,定义这个无向图的花费是 其中path(i,j),是i到j的最短路. 去掉其中一条边之后,花费为c’,问c’ – c的最大值,输出c和c’. 思路: 枚举每条边,每次把这条边去掉,然后以每个点为起点,跑一次Dijkstra,再计算总花费. 这样的复杂度为O(mn^2log(n)),这个复杂度刚好卡着时间过,所以是暴力,更优的方法是最短路树(待学习. 代码: #include <stdio.h> #include <string.h> #include <…
Description The army of United Nations launched a new wave of air strikes on terroristforces. The objective of the mission is to reduce enemy's logistical mobility. Each airstrike will destroy a path and therefore increase the shipping cost of the sh…
题意: 给一个无向图,n个点,m条边,可不连通,可重边,可多余边.两个问题,第一问:求任意点对之间最短距离之和.第二问:必须删除一条边,再求第一问,使得结果变得更大. 思路: 其实都是在求最短路的过程. 第一问可以floyd解决,也可以SSSP解决.注意是任意两个点,(a,b)和(b,a)是不同的,都要算. 第二问要穷举删除每条边,再求第一问.为了降低复杂度,假设用dijkstra求最短路,那么可以利用第一问中所生成的树,共n棵,每棵至多n-1条边,如果穷举的边不在该某树上,那么该树的所有路径长…
UVA1416 Warfare And Logistics 链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=36232 [题意] 给出一个无向图,定义C =∑(d[i][j])  ,其中d[][]表示两点间的最短距离,求出C并求出删除一条边后的最大C2. [思路] 最短路树. 简单地想我们可以用floyd或SPFA求出两点间的最短距离,然后枚举删除m条边再次进行这项工作. 其实这里我们不用重新全部计算,因为如果所删除的…
题目链接:https://vjudge.net/problem/UVA-1416 题解: 这是一个最短路的好题,首先我们考虑如果暴力弗洛伊德,显然时间复杂度不对,如果做n次spfa好像复杂度也不对,所以考虑优化这个暴力. 我们考虑对于一个单源最短路,只有改变了最短路树中的某条边,才需要重新做一次最短路.所以我们不需要对于每条边都重新做最短路,只需要对于在最短路数上的边做,所以时间复杂度就优化成了你] mn^2log(n). 实现的时候要用pre数组记下,以i为终点的最短路树的边,实现有点复杂,看…
很多的边会被删掉,需要排除一些干扰进行优化. 和UVA - 1279 Asteroid Rangers类似,本题最关键的地方在于,对于一个单源的最短路径来说,如果最短路树上的边没有改变的话,那么最短路肯定是不会变的, 所以只要枚举删掉最短路树上的边.这样的时间复杂度就能过了. #include<bits/stdc++.h> using namespace std; , maxm = ; int head[maxn], to[maxm], nxt[maxm],wei[maxm],ecnt; in…
题目: Sample Input4 6 10001 3 21 4 42 1 32 3 33 4 14 2 2Sample Output28 38 题意: 给出n个节点m条无向边的图,每条边权都为正.令c等于每对结点的最短路长度之和.要求删一条边后使得新的c值c‘最大.不连通两点的最短路长度视为L.(1<=n<=100,1<=m<=1000,1<=L<=10^8) 分析: 因为规模比较小,所以可以考虑删边.主要是删什么边的问题. 这里用到最短路树.在源点确定的情况下,只要…
题目大意: 求图中两两点对最短距离之和 允许你删除一条边,让你最大化删除这个边之后的图中两两点对最短距离之和. 暴力:每次枚举删除哪条边,以每个点为源点做一次最短路,复杂度\(O(NM^2logN)\). 值得注意的是,\(Dijkstra\)的复杂度\(O(NlogN)\)是关于边而非点的. 这个复杂度对于\(n=100,m=1000\)的数据难以接受.我们考虑对每个点建出其最短路树.容易想到,只有删除到这个点的最短路树上的边时,才需要再做一次\(Dijkstra\).也就是说每个源点只需要做…
为了图.计算最短随机分ans1.和删除边缘.免费才能够获得最大和短路之间的最大分ans2,如果这两个不沟通.看作是两个点之间的最短距离l. 第一个想法是枚举每个边缘,然后运行n最短时间.但是,这种复杂性是1000*1000*100*log(100),太大了..事实上在固定起点,求出单元最短路的时候.同一时候能够求出单源最短路树,仅仅有删除的边在树上的时候.源点到任一点的最短路才会有变化,所以在每次跑单源最短路的时候,仅仅须要枚举树上的n-1条边就能够了.累加一下删除每一条边时,在当前源点的情况下…
题目大意:有N个点,M条路,如果两条路不连通的话,就将这两条路的距离设置为L 现在要求你求出每两点之间的最短距离和 接着要求 求出炸断 给出的M条路中的一条路后,每两点之间的最短距离和的最大值(翻译来自http://blog.csdn.net/l123012013048/article/details/47297393) 单源最短路树:把源点到其他点的最短路拼起来,形成最短路树(可能有多棵,这里只需要一棵).我们把起点为i的单源最短路树称为i源最短路树.想要让最短路改变,删除的边必定在这课最短路…