keras学习简单线性回归【1】】的更多相关文章

转自:https://morvanzhou.github.io/tutorials/machine-learning/keras/2-1-regressor/ 总的代码的过程就是: 1.导入模块+创建数据 2.建立模型 3.激活模型compile 4.训练模型 5.检验模型 6.可视化结果.…
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算. 使用sklearn.linear_model.LinearRegression进行线性回归 sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fit.predict.score来训练.评价模型,并使用模型进…
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK TensorFlow-gpu Keras-gpu Theano MKL CuDNN 参考书籍:谢梁 , 鲁颖 , 劳虹岚.Keras快速上手:基于Python的深度学习实战 Keras 简介 Keras 这个名字来源于希腊古典史诗<奥德赛>的牛角之门(Gate of Horn):Those tha…
写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https://github.com/Avik-Jain/100-Days-Of-ML-Code 中文翻译版:https://github.com/MLEveryday/100-Days-Of-ML-Code 本人新手一枚,所以学习的时候遇到不懂的会经常百度,查看别人的博客现有的资料.但是由于不同的人思维和写作风格…
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析(Regression Analysis) 研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3- -)之间的回归模型,来预测因变量y的发展趋向. 回归分析的分类 线性回归分析 简单线性回归 多重线性回归 非线性回归分析 逻辑回归 神经网络 回归分…
官网实例详解-目录和实例简介-keras学习笔记四 2018-06-11 10:36:18 wyx100 阅读数 4193更多 分类专栏: 人工智能 python 深度学习 keras   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/wyx100/article/details/80647379 https://github.com/keras-team/keras/tree/mast…
本节将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 本小节直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包: 在神经网络中,所有的输入都线性增加.为了使训练有效,输入应该被归一化,所以这里定义一个函数来归一化输入数据: 现在使…
TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.edu/datasets/boston处获取. 直接从 TensorFlow contrib 数据集加载数据.使用随机梯度下降优化器优化单个训练样本的系数. 实现简单线性回归的具体做法 导入需要的所有软件包:                                               …
记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归也有几个地方要注意 fit的时候,对于X,要求是n*m的类型,y要是n*1的类型 sklearn会将得到的系数存储起来,分别在coef_中和intercept_中,intercept_是偏移,也就是b,coef_是k,或者向量中的W 来看具体例子 from sklearn.linear_model…
和相关分析一样,回归分析也可以描述两个变量间的关系,但二者也有所区别,相关分析可以通过相关系数大小描述变量间的紧密程度,而回归分析更进一步,不仅可以描述变量间的紧密程度,还可以定量的描述当一个变量变化时,对另一个变量的影响程度,这是相关分析无法做到的,正因为如此,回归分析更多用来预测和控制变量值,但是回归分析并不等同于因果关系. 根据模型的不同可以分为线性回归和非线性回归 线性回归分析一般用线性模型来描述,和方差分析模型一样,只是各部分的叫法有所不同,回归模型分为常量.回归部分.残差常量就是所谓…