M-H是Metropolis抽样方法的扩展,扩展后可以支持不对称的提议分布. 对于M-H而言,根据候选分布g的不同选择,衍生出了集中不同的变种: (1)Metropolis抽样方法 (2)随机游动Metropolis (3)独立抽样方法 <---- 本章涉及的方法 (4)逐分量的M-H抽样方法 独立抽样方法是M-H的一个特殊形式.因为独立,所以提议分布去掉了先验的影响. [Bayes] Metropolis-Hastings Algorithm 中可见的例如下图,是否可以用于预测参? 在此用于预…
2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influence 2 - 4 - Conditional Independence 2 - 5 - Independencies in Bayesian Networks 2 - 6 - Naive Bayes 2 - 7 - Application Medical Diagnosis 2 - 8 - Knowle…
[Bayes] prod: M-H: Independence Sampler for Posterior Sampling dchisq gives the density,                          # 计算出分布下某值处的密度值 pchisq gives the distribution function, qchisq gives the quantile function, rchisq generates random deviates. 通过一个例子直接了解…
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM Alex Kendall Geometry and Uncertainty in Deep Learning for Computer Vision 语义分割 colah's blog Feature Visu…
虽然openBugs效果不错,但原理是什么呢?需要感性认识,才能得其精髓. Recall [Bayes] prod: M-H: Independence Sampler firstly. 采样法 Recall [ML] How to implement a neural network then.     梯度下降法 And compare them. 梯度下降,其实就是减小loss function,不断逼近拟合的过程. 那采样法呢? y = a*x +sigma,  where sigma~…
本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布进行采样的.Metropolis 算法首先在马尔可夫链中基于上一个个状态 \(x^{(t-1)}\) 推荐一个新的状态 \(x^*\),这个新状态是根部建议分布 \(q(x^*|x^{(t-1)})\) 进行采样得到的.算法基于目标分布函数在 \(x^*\) 上的取值接受或者拒绝 \(x^*\).…
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discrete attributes with finit number of values 2. Parameter density estimation 3. Naive Bayes classification algorithm 4. AutoClass clustering alogrithm \…
6 Easy Steps to Learn Naive Bayes Algorithm (with code in Python) Introduction Here’s a situation you’ve got into: You are working on a classification problem and you have generated your set of hypothesis, created features and discussed the importanc…
此是所有采样的基类,这样定义的好处是,我们可以分别测试每一个采样算法. 类定义: #pragma once #ifndef __SAMPLER_HEADER__ #define __SAMPLER_HEADER__ #include "../utilities/geometry.h" class Sampler { public: Sampler(); virtual ~Sampler(); Sampler(const integer samps); Sampler(const int…
转自:http://blog.evjang.com/2017/01/nips2016.html           Eric Jang Technology, A.I., Careers               Monday, January 2, 2017 Summary of NIPS 2016   The 30th annual Neural Information Processing Systems (NIPS) conference took place in Barcelona…
https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms/?spm=5176.100239.blogcont61037.12.0MhmIg https://yq.aliyun.com/articles/61037?spm=5176.100239.bloglist.110.rlSDN9 We are probably living in the most defining period of hu…
主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以及它和最小二乘分类的关系 (Fisher分类是最小二乘分类的特例)2) 概率生成模型的分类模型3) 概率判别模型的分类模型4) 全贝叶斯概率的Laplace近似 需要注意的是,有三种形式的贝叶斯:1) 全贝叶斯2) 经验贝叶斯3) MAP贝叶斯我们大家熟知的是 MAP贝叶斯 MAP(poor man…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在得到信息之后,再重新加以修正的概率叫做后验概率.贝叶斯分类是后验概率. 贝叶斯分类算法步骤: 第一步:准备阶段 该阶段为朴素贝叶斯分类做必要的准备.主要是依据具体情况确定特征属性,并且对特征属性进行适当划分.然后就是对一部分待分类项进行人工划分,以确定训练样本. 这一阶段的输入是所有的待分类项,输出…
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有章节focus on这里. 可能这些内容有些“反人类正常逻辑”,故让更多的菜鸡选择了放弃. <MLaPP> 参考<MLaPP>的内容,让我们打开坑,瞧一瞧. 20.2 Belief propagation for treesIn this section, we generalize…
通常我们安装Oracle数据库软件,都是用OUI图形界面来完成的,但有些Unix/Linux系统中并未安装图形系统,也就无法使用图形界面来安装Oracle的产品了,对于这种场景,就只能采用静默方式来安装了,Oracle提供了这种silent方式,主要是通过配置响应文件rsp来完成的. 一.静默安装10.2.0.1数据库软件 --解压安装包 [oracle@prod u01]$ unzip 10201_database_linux32.zip [oracle@prod u01]$ cd datab…
R in Nutshell 前言 例子(nutshell包) 本书中的例子包括在nutshell的R包中,使用数据,需加载nutshell包 install.packages("nutshell") 第一部分:基础 第一章 批处理(Batch Mode) R provides a way to run a large set of commands in sequence and save the results to a file. 以batch mode运行R的一种方式是:使用系统…
--2013-09-16截取的数据-- 使用df-h命令查看系统磁盘空间 [root@erpdbs PROD]# df -h Filesystem Size Used Avail Use% Mounted on /dev/sda5 4.9G 241M 4.4G 6% / /dev/sda10 716G 432G 248G 64% /back /dev/sda1 4.9G 50M 4.6G 2% /boot /dev/sda9 481G 415G 42G 91% /data none 7.9G 0…
Thinhole类说白了就是在眼睛处,放一个放大镜.就像我们平时用放大镜观察物体一样.这样实现的效果的是,周围会模糊.原理书上都说的很清楚了,我把算法截图下来了.这个应用我猜测是在竞技游戏比如csgo中,狙击开镜后效果.具体等之后开发游戏时,再测试一下.如下: 类声明: #pragma once #ifndef __THINLENS_HEADER__ #define __THINLENS_HEADER__ #include "camera.h" class Sampler; class…
这个算法是均匀采样算法,继承于Sampler类. 类声明: #pragma once #ifndef __REGULAR_HEADER__ #define __REGULAR_HEADER__ #include "sampler.h" class Regular :public Sampler { public: Regular(); ~Regular(); Regular(const integer samps); Regular(const integer samps, const…
这个类主要是记录了所有跟视图窗口有关的数据,用于显示. 类声明: #pragma once #ifndef __VIEWPLANE_HEADER__ #define __VIEWPLANE_HEADER__ #include "../../Types.h" class Sampler; class ViewPlane { public: ViewPlane(); ViewPlane(const ViewPlane& vp); void set_hres(const intege…
作者:我爱机器学习原文链接:ICML历年Best Papers ICML (Machine Learning)(1999-2016) 2016 Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang Google Inc. Pixel Recurrent Neural Networks Aaron van den Oord Google DeepMind Ensuring Rapid Mixing and L…
数据挖掘方面重要会议的最佳paper集合,兴许将陆续分析一下内容: 主要有KDD.SIGMOD.VLDB.ICML.SIGIR KDD (Data Mining) 2013 Simple and Deterministic Matrix Sketching Edo Liberty, Yahoo! Research 2012 Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping T…
Matting任务里的Gradient与Connectivity指标 主要背景 Matting任务就是把α(不透明度, 也就是像素属于前景的概率).F(前景色)和B(背景色)三个变量给解出来. C为图像当前可观察到的颜色, 这是已知的. 问题是一个等式解不出三个变量, 因此就必须引入额外的约束使这个方程可解, 这个额外的约束就是由用户指定的trimap(有人译为三元图)图, 或者是仅仅在前景和背景画几笔的草图(scribbles). 主要的手段 传统方法: Poisson Matting/Bay…
先放子函数: function [C, B, A, rM] = dir2fs_r(h, r); % DIRECT-form to Frequency Sampling form conversion % ---------------------------------------------------------- % [C, B, A, rM] = dir2fs_r(h, r) % C = Row vector containing gains for parallel sections…
Generative Models 生成模型帮助我们生成新的item,而不只是存储和提取之前的item.Boltzmann Machine就是Generative Models的一种. Boltzmann Machine Boltzmann Machine和Hopfield Network对比 Energy Function是相同的 神经元\(x_i\)的取值在0和1之间,而不是Hopfield Network中的-1和1. 使用Boltzmann Machine来产生新的状态,而不是提取存储的…
一.前言 变分贝叶斯方法最早由Matthew J.Beal在他的博士论文<Variational Algorithms for Approximate Bayesian Inference>中提出,作者将其应用于隐马尔科夫模型,混合因子分析,线性动力学,图模型等.变分贝叶斯是一类用于贝叶斯估计和机器学习领域中近似计算复杂(intractable)积分的技术.它主要应用于复杂的统计模型中,这种模型一般包括三类变量:观测变量(observed variables, data),未知参数(param…
先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: 一般的机器学习模型:没有掺杂太多统计概念,例如决策树,KNN聚类,感知机等. 统计机器学习模型:依赖统计理论,主要是贝叶斯统计,例如SVM,naive bayesian,贝叶斯线性回归,高斯过程等. 神经网络模型:可以简单的理解为感知机的扩展,因为扩展的太猛,单独成立门派咯. 如此定义,有助于菜鸡…
Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生的条件概率 P(A), P(B) – 独立事件A和独立事件B的边缘概率 顺便提一下,上式中的分母P(B)可以根据全概率公式分解为: Bayesian inferenc(贝叶斯推断) 贝叶斯定理的许多应用之一就是…
Bayesian inference Using Gibbs Sampling 允许用户指定复杂的多层模型,并可使用MCMC算法来估计模型中的未知参数. We use DAGs to specify models. 这里只涉及简单的贝叶斯网络,具体学习可见: Carnegie Mellon University course 10-708, Spring 2017, Probabilistic Graphical Models Ref: http://www.cnblogs.com/Dzhouq…