Flume 在有赞大数据的实践】的更多相关文章

https://mp.weixin.qq.com/s/gd0KMAt7z0WbrJL0RkMEtA 原创: 有赞技术 有赞coder 今天 文 | hujiahua on 大数据 一.前言 Flume 是一个分布式的高可靠,可扩展的数据采集服务. Flume 在有赞的大数据业务中一直扮演着一个稳定可靠的日志数据“搬运工”的角色.本文主要讲一下有赞大数据部门在 Flume 的应用实践,同时也穿插着我们对 Flume 的一些理解. 二.Delivery 保证 认识 Flume 对事件投递的可靠性保证…
点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统从 Airflow 迁移到 Apache  DolphinScheduler 的方案设计思考和生产环境实践. 这位来自浙江杭州的 90 后年轻人自 2019 年 9 月加入有赞,在这里从事数据开发平台.调度系统和数据同步组件的研发工作.刚入职时,有赞使用的还是同为 Apache 开源项目的 Airf…
一.前言 从20世纪90年代数字化医院概念提出到至今的20多年时间,数字化医院(Digital Hospital)在国内各大医院飞速的普及推广发展,并取得骄人成绩.不但有数字化医院管理信息系统(HIS).影像存档和通信系统(PACS).电子病历系统(EMR)和区域医疗卫生服务(GMIS)等成功实施与普及推广,而且随着日新月异的计算机技术和网络技术的革新,进一步为数字化医院带来新的交互渠道譬如:远程医疗服务,网上挂号预约. 随着IT技术的飞速发展,80%以上的三级医院都相继建立了自己的医院信息系统…
一.前言 1.从今天开始进行流式大数据计算的实践之路,需要完成一个车辆实时热力图 2.技术选型:HBase作为数据仓库,Storm作为流式计算框架,ECharts作为热力图的展示 3.计划使用两台虚拟机来打一个小型的分布式系统,使用Ubuntu系统 二.HBase简介 1.HBase是基于HDFS(Hadoop分布式文件系统)的NoSQL数据库,采用k-v的存储方式,所以查询速度相对比较快. 2.下面画图比较HBase与传统的RDS(关系型数据库)数据库的区别 (1)RDS,经常用的比如MySQ…
1.实时处理框架 即从上面的架构中我们可以看出,其由下面的几部分构成: Flume集群 Kafka集群 Storm集群 从构建实时处理系统的角度出发,我们需要做的是,如何让数据在各个不同的集群系统之间打通(从上面的图示中也能很好地说明这一点),即需要做各个系统之前的整合,包括Flume与Kafka的整合,Kafka与Storm的整合.当然,各个环境是否使用集群,依个人的实际需要而定,在我们的环境中,Flume.Kafka.Storm都使用集群. 2. Flume+Kafka整合 2.1 整合思路…
一.前言 1.这一文学习使用Hive 二.Hive介绍与安装 Hive介绍:Hive是基于Hadoop的一个数据仓库工具,可以通过HQL语句(类似SQL)来操作HDFS上面的数据,其原理就是将用户写的HQL语句转换成MapReduce任务去执行,这样不用开发者去写繁琐的MapReduce程序,直接编写简单的HQL语句,降低了很多学习成本.由于Hive实际上是执行MapReduce,所以Hive的查询速度较慢,不适合用于实时的计算任务 1.下载Hive的tar包,并解压 -bin.tar.gz 2…
一.前言 1.这一文开始进入Storm流式计算框架的学习 二.Storm简介 1.Storm与Hadoop的区别就是,Hadoop是一个离线执行的作业,执行完毕就结束了,而Storm是可以源源不断的接受数据源,不停的对数据进行处理,而数据就行水流一样不停的流进来,经过处理,再将结果存入数据库或者做其他用途 2.基础概念 (1)Tuple(元组):数据流传递的基本单元,相当于数据的流动通过Tuple作为对象来传递 (2)Spout(龙卷):相当于数据源,通过重写nextTuple()方法,源源不断…
一.前言 1.上文中我们搭建好了一套HBase集群环境,这一文我们学习一下HBase的基本操作和客户端API的使用 二.shell操作 先通过命令进入HBase的命令行操作 /work/soft/hbase-/bin/hbase shell 1.建表 create 'test', 'cf' (1)以上命令是建立一个test表,里面有一个列族cf (2)与RDS不同,HBase的列不是必须的,当向列族中插入一个单元格数据时,才有了列 2.查看所有表 list 3.查看表属性 describe 't…
一.前言 1.前面我们搭建好了高可用的Hadoop集群,本文正式开始搭建HBase 2.HBase简介 (1)Master节点负责管理数据,类似Hadoop里面的namenode,但是他只负责建表改表等操作,如果挂掉了也不会影响使用 (2)RegionServer节点负责存储数据,类似Hadoop里面的datanode,通过Zookeeper进行通信 (3)可以看出HBase实际上是基于HDFS的分布式数据库,但是单机模式下也可以直接用普通文件系统存储数据 二.HBase环境搭建 1.下载tar…
一.前言 1.上文中我们已经搭建好了Hadoop和Zookeeper的集群,这一文来将Hadoop集群变得高可用 2.由于Hadoop集群是主从节点的模式,如果集群中的namenode主节点挂掉,那么集群就会瘫痪,所以我们要改造成HA模式(High Avaliable,高可用性)的集群,说白了就是设置一个备用的namenode节点,当线上使用的namenode挂掉后,会切换备用节点,让集群可以继续运行 二.HA模式配置 HA模式原理:比如设置两个namenode节点,一个active,一个sta…