rnn-手写数字识别-网络结构-shape】的更多相关文章

手写数字识别经典案例,目标是: 1. 掌握tf编写RNN的方法 2. 剖析RNN网络结构 tensorflow编程 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data ### 注意 # init_state = tf.zeros(shape=[batch_size,rnn_cell.state_size]) # init_state = lstm_cell…
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容. train-images-idx3-ubyte.gz:  training set images     图片样本,用来训练模型 train-labels-idx1-ubyte.gz:  training set labels     图片样本对应的数字标签 t10k-images-…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ 循环神经网络RNN 相关名词: - LSTM:长短期记忆 - 梯度消失/梯度离散 - 梯度爆炸 - 输入控制:控制是否把当前记忆加入主线网络 - 忘记控制:控制是否暂时忘记主线网络,先看当前分线 - 输出控制: 控制输出是否要考虑要素 - 数据有顺序的/序列化 - 前面的影响后面的 RNN L…
学习,笔记,有时间会加注释以及函数之间的逻辑关系. # https://www.cnblogs.com/felixwang2/p/9190664.html # https://www.cnblogs.com/felixwang2/p/9190664.html # TensorFlow(十二):使用RNN实现手写数字识别 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 python3.5.0 MNIST数据集将四个文件下载后放到当前目录下的MNIST_data文件夹下 定义模型框架与前向传播 import tensorflow as tf # 定义神经网络结构相关参数 INPUT_NODE = 784 OUTPUT_NODE = 10 LA…
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积层2 (5)搭建全连接层3 (6)搭建输出层 2.2 训练和评估模型 三.结果 3.1 训练过程 3.2 测试过程 四.讨论与结论 一.背景介绍 1.1 卷积神经网络 近年来,深度学习的概念非常火热.深度学习的概念最早由Hinton等人在2006年提出.基于深度置信网络(DBN),提出非监督贪心逐层…
目录 神经网络的卷积.池化.拉伸 LeNet网络结构 LeNet在MNIST数据集上应用 参考资料 LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉任务.自那时起,CNN的最基本的架构就定下来了:卷积层.池化层.全连接层.如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu. 神经网络的卷积.池化.拉伸 前面讲了卷积和池化,卷积层可以从图像中提取特…
Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflow版本:1.* 程序流程图 了解mnist数据集 mnist数据集:mnist数据集下载地址   MNIST 数据集来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来…