http://blog.topspeedsnail.com/archives/10977 从2D图片生成3D模型(3D-GAN) https://blog.csdn.net/u014365862/article/details/54783209 GANs是Generative Adversarial Networks的简写,中文翻译为生成对抗网络,它最早出现在2014年Goodfellow发表的论文中:Generative Adversarial Networks.GANs是目前深度学习领域最火…
基于Jittor框架实现LSGAN图像生成对抗网络 生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一.GAN模型由生成器(Generator)和判别器(Discriminator)两个部分组成.在训练过程中,生成器的目标就是尽量生成真实的图片去欺骗判别器.而判别器的目标就是尽量把生成器生成的图片和真实的图片分别开来.这样,生成器和判别器构成了一个动态的"博弈过程".许多相关的研究…
生成对抗网络的概念 上一篇中介绍的VAE自动编码器具备了一定程度的创造特征,能够"无中生有"的由一组随机数向量生成手写字符的图片. 这个"创造能力"我们在模型中分为编码器和解码器两个部分.其能力来源实际上是大量样本经过学习编码后,在数字层面对编码结果进行微调,再解码生成图片的过程.所生成的图片,是对原样本图的某种变形模仿. 今天的要介绍的生成对抗网络(GAN)也具备很类似的功能,所建立的模型,能够生成非常接近样本图片的结果. 相对于VAE,生成对抗网络GAN更接近一…
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Networks,GAN)最早由 Ian Goodfellow 在 2014 年提出,是目前深度学习领域最具潜力的研究成果之一.它的核心思想是:同时训练两个相互协作.同时又相互竞争的深度神经网络(一个称为生成器 Generator,另一个称为判别器 Discriminator)来处理无监督学习的相关问题.在训…
本文由  网易云发布. “知物由学”是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道.“知物由学”希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 作者:Brad Harris,安全研究员,Brad曾在公共和私营部门的网络和计…
1.基础知识 创始人的介绍: “GANs之父”Goodfellow 38分钟视频亲授:如何完善生成对抗网络?(上) “GAN之父”Goodfellow与网友互动:关于GAN的11个问题(附视频) 进一步了解,应用领域扩展: 生成对抗网络GANs理解(附代码)    对该文章的转载补充:对生成对抗网络GANs原理.实现过程.应用场景的理解(附代码),另附:深度学习大神文章列表 简单理解与实验生成对抗网络GAN AI科普贴:生成对抗网络(GANs)为什么这么火? GAN Zoo: The GAN Z…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…
GAN原理 生成对抗网络GAN由生成器和判别器两部分组成: 判别器是常规的神经网络分类器,一半时间判别器接收来自训练数据中的真实图像,另一半时间收到来自生成器中的虚假图像.训练判别器使得对于真实图像,它输出的概率值接近1,而对于虚假图像则接近0 生成器与判别器正好相反,通过训练,它输出判别器赋值概率接近1的图像.生成器需要产生更加真实的输出,从而欺骗判别器 在GAN中要同时使用两个优化器,分别用来最小化判别器和生成器的损失 Batch Normalization Batch Normalizat…
""" 生成对抗网络(GAN,Generative Adversarial Networks)的基本原理很简单: 假设有两个网络,生成网络G和判别网络D.生成网络G接受一个随机的噪声z并生成图片, 记为G(z):判别网络D的作用是判别一张图片x是否真实,对于输入x,D(x)是x为真实图片的概率. 在训练过程中, 生成器努力让生成的图片更加真实从而使得判别器无法辨别图像的真假, 而D的目标就是尽量把分辨出真实图片和生成网络G产出的图片,这个过程就类似于二人博弈, G和D构成了一…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…