题目链接 题意:给定两个长度为n的数组a与长度为m的数组b, 给定一个操作符op满足 x op y = x < y ? x+y : x-y.  有q个询问,每次给出询问c,问:有多少对(i, j)满足a[i] op b[j] = c ? 0 <= c <= 100000, 其余数据范围在[0, 50000]. 题解:问题的关键在于如何分隔开 x < y与x >= y. cdq分治,合并的时候a[l, mid]与b[mid+1, r]卷积一次计算a[] < b[] , a…
Quailty and Binary Operation 题意 分别给\(N,M(N,M \le 50000)\)两个数组\(A\)和\(B\),满足\(0 \le A_i,B_i \le 50000\). 有\(Q(Q \le 50000)\)次询问,每次求\(a_i \ opt\ b_j = c\)的对数\((i,j)\). \[x\ opt\ y = \begin{cases} x+y,\ if\ x<y, \\ x-y,\ otherwise. \end{cases}\] 思路 分治+F…
Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 647    Accepted Submission(s): 287 Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view,…
题意:dp[n] = ∑ ( dp[n-i]*a[i] )+a[n], ( 1 <= i < n) cdq分治. 计算出dp[l ~ mid]后,dp[l ~ mid]与a[1 ~ r-l]做卷积运算. #include <bits/stdc++.h> using namespace std; ; ; const double pi = acos(-1.0); struct comp{ ,){r=_r;i=_i;} comp operator+(const comp x){retu…
题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会超时的. 所以可以用cdq分治来优化. cdq分治就是处理(l, mid)的时候, 将dp[l]...dp[mid]对dp[mid+1]...dp[r]做的贡献都算出来. #include <bits/stdc++.h> using namespace std; #define pb(x) pus…
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中有不同的队友. 这年头真是--分治FFT都开始烂大街了-- 我们来推一推吧 这显然是一个1d1d的DP,用f[i]表示i名队员的方案数 f[i]=∑j=0i−1f[i−j−1]∗Cji−1 即i−1个人里面选j个和i组队(似乎类似strling数) 然后化一下简,便可得到 f[i]=(i−1)!∑j…
题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对于这种递推式,也就是dp[i]等于前j个dp数组和a数组的卷积,然后可看所有的 一看n是1e5,所以暴力超时,然后采用cdq分治加速,这种卷积递推通常采用cdq分治加速 cdq的话很简单了,就是先递归左边,算左对右的贡献,递归右边就行,一半一半更新 #include <cstdio> #inclu…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3,则其权值为5,现在有长度为n的字段,求通过不同拆分得到的字段权值乘积和. [题解] 记DP[i]表示长度为i时候的答案,DP[i]=sum_{j=0}^{i-1}DP[j]w[i-j],发现是一个卷积的式子,因此运算过程可以用FFT优化,但是由于在计算过程中DP[j]是未知值,顺次计算复杂度是O(…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
[CF553E]Kyoya and Train 题意:有一张$n$个点到$m$条边的有向图,经过第i条边要花$c_i$元钱,经过第i条边有$p_{i,k}$的概率要耗时k分钟.你想从1走到n,但是如果整个过程耗时超过了$t$,则需要额外花费$f$元.求从1走到n的期望最小花费. $n\le 50,m\le 100,t\le 20000,k\le 1$ 题解:我们先用最短路预处理出如果已经超时了,从1走到n的最小花费.剩下的考虑DP. 用f[i][j]表示在i时刻到达了j,想走到n的最小花费.则对…