为了更进一步的清晰理解大脑皮层对信号编码的工作机制(策略),须要把他们转成数学语言,由于数学语言作为一种严谨的语言,能够利用它推导出期望和要寻找的程式.本节就使用概率推理(bayes views)的方式把稀疏编码扩展到随时间变化的图像上,由于人类或者哺乳动物在日常活动中通过眼睛获取的信号是随时间变化而变化的,对于此类信号仍然有一些稀疏系数和基能够描写叙述他们,同类型的处理方式也有慢特征分析(slow features analysis).废话不多说了,进入正题: 我们把图像流(图像序列)看成时空…
top-down visual saliency via joint CRF anddictionary learning 自顶向下的视觉显著性是使用目标对象的可判别表示和一个降低搜索空间的概率图来进行目标定位.一,提出了一个联合CRF和判别字典自顶向下的显著性模型.该模型建立在包含潜在变量的CRF的基础上,将稀疏编码作为潜在变量,对CRF调制的字典进行训练,同时训练具有稀疏编码的CRF,二,提出一种最大间隔方法,通过快速推理来训练模型. Bag of word(Bow)模型高度依赖于字典和采样…