[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning ABSTRACT 该文章作者为EmotiW2015比赛静态表情识别的亚军,采用的方法为cnn的级联,人脸检测方面也采用了当时3种算法的共同检测, 通过在FER2013数据库上进行模型预训练,并在SFEW2.0(比赛数据)上fine-tune,从而在比赛的验证集和测试集上取得55.96%和61.29% 的准确…
论文基本情况 发表时间及刊物/会议:2022 CVPR 发表单位:西安电子科技大学, 香港中文大学,重庆邮电大学 问题背景 在大部分半监督学习方法中,一般而言,只有部分置信度高于提前设置的阈值的无标签数据被利用.由此说明,大部分半监督方法没有充分利用已有数据进行训练. 论文创新点 设置了Adaptive Confidence Margin(自适应阈值)根据训练规律动态调整阈值,充分利用所有的无标签数据. 网络结构 具体的训练步骤如下: 初始基本设定: 设置初始阈值,本文中,对于每个类别,阈值初始…
Robust Deep Multi-modal Learning Based on Gated Information Fusion Network 2018-07-27 14:25:26 Paper:https://arxiv.org/pdf/1807.06233.pdf  Related Papers:   1. Infrared and visible image fusion methods and applications: A survey Paper 2. Chenglong Li…
[arXiv 1710.03144]Island Loss for Learning Discriminative Features in Facial Expression ABSTRACT 作者在CenterLoss的基础上,提出了一个新的Loss,在关注类别的类内距离的同时,优化类间距离,使得每个类别拥有更大的margin,从而迫使网络能够学习到更具判别性的特征. 当前问题 在环境不可控(光照,姿态,遮挡,人物状态)等条件下,不同表情间的类间距离往往会大于类内距离.同时因为高的类内距离,同…
Deep Meta Learning for Real-Time Visual Tracking based on Target-Specific Feature Space  2018-01-04  15:58:15  写在前面:为什么要看这个paper?这篇 paper 貌似是第一个将 meta-learning 应用到 visual tracking 领域的,取得了速度和精度较好的平衡. Introduction: 我们知道,tracking 中比较重要的就是 target object…
Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.mosic/reinforcement-learning-based-trading-application-at-jp-morgan-chase-f829b8ec54f2 FT released a story today about the new application that will op…
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network training by reducing internal covariate shift 和下面的这些解读之后,还有感觉有些不明白.比如, 是怎么推导出来的,我怎么就是没搞懂呢? 1.论文翻译:论文笔记-Batch Normalization 2.博客专家 黄锦池 的解读:深度学习(二十九)Batch…
题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5396 Problem Description Teacher Mai has n numbers a1,a2,⋯,anand n−1 operators("+", "-" or "*")op1,op2,⋯,opn−1, which are arranged in the form a1 op1 a2 op2 a3 ⋯ an. He wan…
Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep. The recurrent long-term models are directly connected to modern visual convnet models and…
目录 1. 技术细节 1.1 失真识别 1.2 得到对应的PRI并评估质量 块效应 模糊和噪声 1.3 扩展为通用的质量评价指标--BPRI 归一化3种质量评分 判断失真类型 加权求和 2. 总结 这一篇应该是继<BLIND QUALITY ASSESSMENT OF COMPRESSED IMAGES VIA PSEUDO STRUCTURAL SIMILARITY>(2016 ICME)之后的拓展工作.后者是将压缩图像再压缩,比较二者伪结构(压缩块角)的相似度:而本文就是将方法一般化,产生…