1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都 是一样的都是1),问长度为t,从给定…
题目描述 一张N个点M条边的无向图,从A走到B,要求:每一次不能立刻沿着上一次的边的反方向返回.求方案数. 输入 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数 M表示学校里的路的条数 t表示HH想要散步的距离 A表示散步的出发点 B则表示散步的终点. 接下来M行 每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路. 数据保证Ai != Bi,但不保证任意两个路口之间至多只有一条路相连接.  路口编号从0到N -1.  同一行内所有数据均由一个空格隔开,行首行尾没有多余空格.没…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一个常规的矩阵乘法. 考虑一下这个限制怎么解决.因为限制的是边,我们不妨考虑和边有关的矩阵. 首先把一条无向边拆成两个有向边,如果边 \(A\) 的终点和边 \(B\) 的起点相同,那么我们就说从边 \(A\) 通向边 \(B\).但是,同源的有向边(也就是从同一条无向边拆成的两条有向边)之间不能建边. 但是为…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问有多少中从A到B的方案. 答案mod 45989 点数<=20,边数<=60,t<=230 题解 一开始没看到不能来回走这一个条件,所以还以为是一道水题. 发现这个之后,思考一下,发现还是一道水题. 如果没有这个限制条件,那么我们按照点构建矩阵,用快速幂优化就可以了. 但是有了这个之后就稍微…
link $solution:$ 将边化为点后重新建矩阵,跑$T-1$幂即可(因为跑的是新边). 最后直接找与$x,y$所相连的边即可. #include<iostream> #include<cstring> #include<cstdio> #include<algorithm> #define int long long #define mod 45989 using namespace std; inline int read(){ ,ans=;ch…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好转移了: 最后从单向边的经过次数得到点的路径方案数. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; ],ct=,tot; struct N{ int hd…
终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define REP(i,s,t) for(int i=s;i<=t;i++) #define dwn(i,s,t) for(int i=s;i>=t;i--) #define clr…
题目传送门 HH去散步 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径 输入输出格式 输入格式: 第一行:五个整数N,M,t,A,B.其中N表示…
题目H有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径. 对于100%的数据,$N ≤ 20,M ≤ 60,t ≤ 2^{30},0 ≤ A,B $ 题解 既然…
bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是说不能回到之前那个点,而是不能走一样的边 又因为\(t\)很大,每次我们的都是做的重复的操作,我们就可以想到矩阵快速幂 为了保证不走重边回去,我们就可以用一个骚操作,把边化作点,然后双向边可以看做两条单向边,然后把每条单向边看做节点,连向所(这条边连向的节点)连出去的边.但是不连这条边的反向边,这样…