求:斐波那契数列的第n项】的更多相关文章

问题描述:斐波那契数列是这样的一个数列,1,1,2,3,5,8,..,即前两项都是1,后面每一项都是其前面两项的和. 现在要你求出该数列的第n项. 分析:该问题是一个经典的数列问题,相信大家在很多语言的教科书上都碰到过这个练习题目.这里我给大家总结了三种经典解法,并对这三个方法进行了对比. 解法一:递归算法.很多教科书上都用这个题作为函数递归知识点讲解的例题,我们可以将每一个项的求法表达为这样一个式子: f(n)=f(n-1)+f(n-2),f(1)=1,f(2)=1,可以看出,可以采用递归算法…
#include<stdio.h> int main() { int n; while(scanf("%d",&n)!=EOF){ int x1,x2,i,x; x1=; x2=; ) printf("); ) printf("1 1"); ) { printf("%d %d",x1,x2); ;i<=n;i++) { x=x1+x2; printf(" %d",x); x1=x2; x2=…
.获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复读取 自己写的代码: package com.itheima; import java.util.Scanner; public class Test3 { /** * 3.求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55 * * @author…
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <script> //需求:封装一个函数,求斐波那契数列的第n项 alert(getValue()); //定义一个函数 function getValue(n){ //回顾…
//C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleTest { class Program { static void Main(string[] args) { OutPut4(); } //方法1,使用while循环 public static vo…
[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [分析] 这是我们熟悉的斐波那契数列,原来呢我们是递推求值的嘛,当然这是最水的想法~~可是!这里的n很大诶,有10^9,for一遍肯定是不可以的咯. 于是,我学会了用矩阵乘法求斐波那契数列(貌似是很经典的). 作为初学者的我觉得十分神奇!! 好,我们来看: 我们每次存两个数f[i-1]和f[i-2],…
题目是Go指南中的闭包求斐波那契数列 package main import "fmt" // 返回一个"返回int的函数" func fibonacci() func() int { var last = 0 var cur = 1 var count = 0 return func() int { return func() int { switch count { case 0: count += 1 return 0 case 1: count += 1 r…
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title></title> </head> <body> <p>斐波那契数列:1,1,2,3,5,8,13,21,34,55,89,144........... </p> <p>求斐波那契数列第n项的值</p> </body&…
1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <…
1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可.   Input 输入1个数n(1 <…