取(2堆)石子游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1587    Accepted Submission(s): 962 Problem Description 有 两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆 中同时取走…
感谢:巴氏(bash)威佐夫(Wythoff)尼姆(Nim)博弈之模板 转自:http://colorfulshark.cn/wordpress/巴氏(bash)威佐夫(wythoff)尼姆(nim)博弈之模板-823.html 最近研究了一下博弈论(听起来很高大上),当然,这只是博弈论中的冰山一角,但不可否认,巴氏(bash)博弈,威佐夫(Wythoff)博弈和尼姆(Nim)博弈这三种在ACM比赛中也是相当重要的,而最大的问题就是,博弈理解起来有较大的难度,即使理解了,也很难快速转换成代码,这…
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜.因此我们发现了如何取胜的法则:如果n=(m+1)r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,…
博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时先手的人可以一次取走所有的: 当$n=m+1$时,这时先手无论取走多少个,后手的人都能取走剩下所有的: 当$n=k*(m+1)$时,对于每$m+1$个石子,先手取$i$个,后手一定能将剩下的$(m+1-i)$个都取走,因此后手必胜: 当$n=k*(m+1)+x(0<x<m+1)$时,先手可以先取$…
这个写的不错 威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同 时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜.     这种情况下是颇为复杂的.我们用(ak,bk)(ak ≤ bk ,k=0,1,2,-,n)表示 两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们 称为奇异局势.前几个奇异局势是:(0,0).(1,2).(3,5).(4,7).(6, 10).(8,13).(9,15).(11,18).(12…
Problem Description Sherlock and Watson are playing the following modified version of Nim game: There are n piles of stones denoted as ,,...,, and n is a prime number; Sherlock always plays first, and Watson and he move in alternating turns. During e…
HDU 5973:http://acm.hdu.edu.cn/showproblem.php?pid=5975 题意: 有两堆石子,每次可以从一堆石子中取任意个,或者从两堆石子中取相同个数的石子.两个人轮流用这种策略取石子,谁取完所有的石子就算胜利.问先手胜还是后手胜. 思路: 一模一样的威佐夫博奕(Wythoff Game),结论的是,假设a>b,那么如果((1+sqrt(5))* (a - b))/2 == b ,那么先手必输.但是这道题的数据比较大,所以需要java做高精度. import…
NIM游戏,NIM游戏变形,威佐夫博弈以及巴什博奕总结 经典NIM游戏: 一共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子,至少取一颗,至多取出这一堆剩下的所有石子. 两个人轮流行动,取走最后一个的人胜利.Alice为先手. 我们定义: P:表示当前局面下先手必败 N:表示当前局面下先手必胜 N,P状态的转移满足如下性质: 1.合法操作集合为空的局面为P 2.可以移动到P的局面为N,这个很好理解,以为只要能转换到P局面…
这里不在详细介绍威佐夫博弈论 简单提一下 要先提出一个名词“奇异局势”,如果你面对奇异局势则必输 奇异局势前几项(0,0).(1,2).(3,5).(4,7).(6,10).(8,13).(9,15).(11,18).(12,20)... 如果判断是否是奇异局势, ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数),k=大堆物品数量-小堆物品数量 (1+√5)/2 = 1.618…===>黄金分割数(可提前求出) min(a,b)找出少的一堆物…
Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000. Output 输出对应也有…