Luogu_3239 [HNOI2015]亚瑟王】的更多相关文章

Luogu_3239 [HNOI2015]亚瑟王 vim-markdown 真好用 这个题难了我一下午 第一道概率正而八经\(DP\),还是通过qbxt讲解才会做的. 发现Sengxian真是个dalao.讲的真是很清楚.代码也比较干净 做题心得: 1.概率和期望联系紧密.若无法直接计算期望,可是用期望的性质,将问题转化为算概率 2.若目标概率无法直接计算,可以通过计算过程中的某个步骤的概率,间接的计算出目标概率 若跟据局面进行状压\(DP\),时间复杂度成熟不起. 考虑优化状态. 发现,对于某…
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已 经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一 下当欧洲人是怎样的体验. 本题中我们将…
dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) * (1 - p[i+1])^j 分别转移到状态: dp(i+1, j-1) dp(i+1, j) 同时假如i+1发动了对答案还有贡献p*d(i+1) 时间复杂度O(NTR) (好像有点不和谐..... ------------------------------------------------…
[BZOJ4008][HNOI2015]亚瑟王(动态规划) 题面 BZOJ 洛谷 题解 设\(f[i][j]\)表示前\(i\)张卡中有\(j\)张被触发的概率. 分两种情况转移,即当前这张是否被触发. 不被触发的概率是\(\displaystyle (1-p[i])^{r-j}\),即一共会考虑\(r-j\)次,每次都不被触发. 被触发的概率呢?拿不被触发的概率减一下就好了也就是\(1-(1-p[i])^{r-j+1}\). 所以得到转移:\(\displaystyle f[i][j]=f[i…
[HNOI2015]亚瑟王 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的. 作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌…
4008: [HNOI2015]亚瑟王 链接 分析: 根据期望的线性性,直接求出每张牌出现的概率,最后乘以攻击力就是答案. 每张牌出现的概率只与它前面的牌有关,与后面的没有关系,于是按顺序考虑每张牌. $f[i][j]$表示到第i张牌,还剩j次出牌的机会(即轮数)的概率,那么有$f[0][r] = 1.0$,然后考虑如何转移. $f[i][j] = f[i - 1][j] \times (1-p[i])^j + f[i - 1][j + 1] \times (1 - (1 - p[i])^{j+…
[BZOJ4008][HNOI2015]亚瑟王 题面 bzoj 洛谷 题解 由期望的线性性 可以知道,把所有牌打出的概率乘上它的伤害加起来就是答案 记第$i$张牌打出的概率为$fp[i]$ 则 $$ ans=\sum_{i=0}^{n-1}d[i]*fp[i] $$ 题目转化为求所有的$fp[i]$ 如何求呢? 可以容易地知道 $$ fp[0]=1-(1-p[i])^r $$ 这就是所有轮都打不出的概率 那么后面的$fp$怎么办? 发现因为有“打完牌结束该轮”的条件 不好直接算出后面的概率 这时…
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已 经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一 下当…
[HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩…
Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer…
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已 经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一 下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌,共…
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验.  本题中我们将考虑游戏的一个简化版模型.  玩家有一套卡牌,共 n张…
???看不懂的期望DP 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly 都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌,…
Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个非 洲人,同时作为一个前 OIer…
这个题一看就是期望dp,但是我有个问题,一个事件的期望等于他所有事件可能行乘权值的和吗...为什么我有天考试的时候就不对呢...求大佬解释一下. 至于这道题,f[i][j]代表前i个有j个发动技能,这个题的关键在于其实人和人之间发技能的顺序无所谓,重点在于最终r轮之后发没发技能,所以r轮只是一个用于计算可能性的东西,我们不去枚举它,这样的话这道题就很好想了,这个题也算是套路吧. 题干: 题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后…
题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每轮中这张牌打出的概率,这张牌没打出就要考虑下一张牌,要有一张牌发出技能才能结束一轮:除非一张牌都发不出来: 设每张牌打出的概率是exp[],答案就是exp[i]*d[i]; exp[i]怎么求? 我们要始终在概率面前一视同仁: 因为牌只有出和不出两种状态,概率和为1: exp[1]=1-(1-p[1…
题目描述 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的. 作为一个非洲人,同时作为一个前 OIer,小 K 自然是希望最大化造成伤害的期望值.但他已经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一下当欧洲人是怎样的体验. 本题中我们将考虑游戏的一个简化版模型. 玩家有一套卡牌,共 n张.游戏时,玩家将…
LINK:亚瑟王 Saber!Excalibur! 比较难的期望dp. 可以发现如果暴力枚举所有的局面复杂度很高 . 转换的思路则是 期望的线性性. 求出每张牌的期望累加即可. 考虑每张牌的期望=这张牌使用的概率*这张牌造成的伤害. 容易得到第一张牌使用的概率=\(p_1+(1-p_1)p_1+(1-p_1)^2p_1+...\) 等比数列求和后容易得到 \(1-(1-p_1)^r\) 同样 我们使用容斥也可以得到上述结果. 接下来需要求出其他牌的概率.由于题目中的条件 使用了一张牌后就结束本局…
http://www.lydsy.com/JudgeOnline/problem.php?id=4008 (题目链接) 题意 给出n个技能,每个技能按顺序有p[i]的可能性释放,可以造成d[i]的伤害.每一轮游戏只能发动一个技能,问r轮游戏期望造成的伤害. Solution 刚了半个下午的dp,然而Wa了又调,调了又Wa,发现整个dp都是萎的,然后删了重写...无奈,看了题解. http://blog.csdn.net/vmurder/article/details/46461649 get了求…
一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - 1, j) 表示 j --> [1, i - 1] && m - j --> [i, n]        (用箭头表示在[]之间...),那么我们只需要让在[i, n]之间的m - j个选择都不是i即可,那么我们应该 * (1 - p[i]) ^ (m - j) 再考虑这张牌我们…
传送门 题意: $r$轮$n$张卡牌,每一轮依次考虑每张卡牌,$p_i$概率发动造成$d_i$伤害后结束本轮或者继续考虑下一张 每张卡牌发动过之后以后都会跳过 求$r$轮之后的期望伤害 看了一节课出题人的做法,并不知道该怎么写代码,感觉带着除法精度好玄学.... 发现网上的题解都是另一种做法 $f[i][j]$表示第$i$张牌被考虑了$j$次的概率 有两个转移: $1.\ $上一张牌考虑了$j$次都不发动 $2.\ $上一张牌考虑了$j+1$次,之前$k$次不发动,第$k$次发动了,$a*\su…
题面在这里 题意 \(n\)张卡按照一定顺序排列,每轮从第\(1\)张开始考虑到最后一张,考虑一张卡时有\(p[i]\)的概率产生\(d[i]\)的贡献,产生贡献时直接退出该轮并在之后的考虑中直接跳过,若不产生贡献继续考虑下一张直到产生贡献或所有牌被考虑完时结束该轮,求期望贡献.多组数据,\(T<=444\). sol 刚了整整一下午还是看了题解(膜拜秒切的大佬orz) 如果直接按照轮数来DP的话每张牌无论是产生贡献的时间还是顺序都需要考虑,原地爆炸 所以考虑每一张牌对答案产生的贡献 而其实第\…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4008题解: 概率dp,神仙题 如果我们可以求出每种牌被取到的概率f,那么最后期望造成的伤害也就很好计算了. 定义dp[i][j]表示有j轮游戏在1-i中的某张牌处就结束的概率. 那么此时我们考虑dp[i][j]会怎样对f[i+1]造成贡献: 只剩下了R-j轮游戏进行到了第i+1张牌,怎么计算这种情况下第i+1张牌发动技能的概率g呢? (令p为其发动技能的概率,并给这R-j轮游戏重新依次编号…
题目链接 \(Click\) \(Here\) 期望神题.最开始一直尝试推朴素一点的,逻辑上的\(DP\)式子,后来发现一直出锅,可能是我的式子没容斥对... 题解中给出的想法是这样的: 首先,如果直接一轮一轮地进行期望推导,会发现前面有冲突的情况.枚举第 \(i\)轮第 \(j\)张卡时既要保证前 \(i-1\)轮都没有发动过第 \(j\) 张卡,又要保证第 \(i\) 轮没有发动过前 \(j−1\) 张卡,再乘 \(p_i\) 算概率.但是这样怎么算都算不对,其实感觉也是一个"意识"…
题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... 这个是 __debug 曾说的一句话 概率要顺着推,期望要倒着推. 似乎看上去很有道理 运用到这道题上就很优秀了. 我们考虑 \(dp_{i,j}\) 为考虑到 \(i\) 张卡牌(其中 \(i+1 \thicksim n\),已经考虑完了)并且玩完 \(j\) 轮的期望伤害. 然后有个显然 奇妙…
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f[i][j]=f[i-1][j]*(1-p[i-1])^p\) 第i-1个j次都失败 \(f[i][j]=f[i-1][j+1]*(1-(1-p[i-1]))^{p+1}\) 第i-1个j+1次有一次成功过 1-其他的概率或者orz 等比数列求和 答案就是\(\sum\limits _{1}^ {n…
思路 神仙概率dp 由于期望的线性性质,能够想到最后要求的期望价值就是把每个卡牌发动的概率\(g_i\)乘上伤害\(val_i\)之后加到一起 然后怎么求\(g_i\)呢,肯定是要dp的 我想了例如dp[i][j]表示第i张纸牌还有j次的考虑机会,dp[i][j]表示第i轮牌j发动的概率,但是都没有想出转移 发现每个牌一局游戏只能够发动一次,而且前面发动一次之后后面的纸牌不能再发动 然后发现第0张纸牌发动的概率是\(p[0]=(1-(1-k[0])^r)\)(总概率-每一回合都不放的概率为有1回…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 这题主要在于:先算概率,再算期望! 一轮一轮的计算似乎很复杂,每一轮它其实是可以看作一次机会 考虑${f[i][j]}$表示已经按照顺序考虑完了第$i$张卡牌,第$i$个人得到了第$j$次机会的概率. 那么${ans=\sum_{i=1}^{n}\sum_{j=1}^{r}f[i][j]*(1-(1-p_i)^{j})*d_i}$//表示$i$利用到了机会. ${f[i][j]=f…
传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第iii轮111~j−1j-1j−1都不选的概率与前i−1i-1i−1轮都不选jjj的概率转移. 但这样是错的. 因为两个转移的量是有交集的. 因此需要换一种状态定义方式. 我们考虑f[i][j]f[i][j]f[i][j]表示前iii张出了jjj张的概率(注意是针对所有轮加起来). 然后转移就很easy…
题解 这是一个经典的概率DP模型 设\(f_{i,j}\)表示考虑到前\(i\)张牌,有\(j\)轮没打出牌的可能性,那么显然\(f_{0,r} = 1\). 考虑第\(i+1\)张牌,他可能在剩下的\(J\)轮里打出,也可能都打不出.那么显然有两种转移. \(f[i+1][j]+=f[i][j]*(1-p[i+1])^j\) 和 \(f[i+1][j-1]+=f[i][j]*(1-(1-p[i+1])^j)\) 在进行第二种转移的时候,我们把添加的值乘上他的伤害累加进答案 #include<c…