该Similarity 实现了 divergence from randomness (偏离随机性)框架,这是一种基于同名概率模型的相似度模型. 该 similarity有以下配置选项: basic_model – 可能的值: be, d, g, if, in, ine 和 p. after_effect – 可能的值: no, b 和 l. normalization – 可能的值: no, h1, h2, h3 和 z.所有选项除了第一个,都需要一个标准值.…
地址:http://terrier.org/docs/v3.5/dfr_description.html The Divergence from Randomness (DFR) paradigm is a generalisation of one of the very first models of Information Retrieval, Harter's 2-Poisson indexing-model [1]. The 2-Poisson model is based on th…
地址:https://en.wikipedia.org/wiki/Okapi_BM25 In information retrieval, Okapi BM25 (BM stands for Best Matching) is a ranking function used by search engines to rank matching documents according to their relevance to a given search query. It is based…
设置n为字符串s的长度.("我是个小仙女") 设置m为字符串t的长度.("我不是个小仙女") 如果n等于0,返回m并退出.如果m等于0,返回n并退出.构造两个向量v0[m+1] 和v1[m+1],串联0..m之间所有的元素. 2 初始化 v0 to 0..m. 3 检查 s (i from 1 to n) 中的每个字符. 4 检查 t (j from 1 to m) 中的每个字符 5 如果 s[i] 等于 t[j],则编辑代价cost为 0:如果 s[i] 不等于…
一.词项相似度 elasticsearch支持拼写纠错,其建议词的获取就需要进行词项相似度的计算:今天我们来通过不同的距离算法来学习一下词项相似度算法: 二.数据准备 计算词项相似度,就需要首先将词项向量化:我们可以使用以下两种方法 字符向量化,其将每个字符映射为一个唯一的数字,我们可以直接使用字符编码即可: import numpy as np def vectorize_words(words): lower_words = [word.lower() for word in words]…