首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
】的更多相关文章
BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数. 更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数. 小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m} 1 &l…
bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速算出其生成树个数.小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m} 1 <=…
[bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快 速算出其生成树个数.小W不知道计算姬算的对不对,你能帮助他吗? Input 仅一行三个整数n,m,p,表示给出的完全二分图K_{n,m}…
[bzoj4766]文艺计算姬——完全二分图生成树个数
Brief Description 求\(K_{n,m}\) Algorithm Design 首先我们有(Matrix Tree)定理,可以暴力生成几组答案,发现一些规律: \[K_{n,m} = n^{m-1} * m^{n-1}\] 然而直接乘法会爆longlong,所以使用快速乘 Code #include <cstdio> #define ll long long ll n, m, p; inline ll mul(ll a, ll b) { ll x = 0; while (b)…
BZOJ4766: 文艺计算姬(Prufer序列)
题面 传送门 题解 结,结论题? 答案就是\(n^{m-1}m^{n-1}\) 我们考虑它的\(Prufer\)序列,最后剩下的两个点肯定是一个在左边一个在右边,设左边\(n\)个点,右边\(m\)个点,\(Prufer\)序列中左边的点肯定出现了\(m-1\)次,右边的点出现了\(n-1\)次,那么就是上面那个了 听说这题可以手屠基尔霍夫矩阵做出来 //minamoto #include<bits/stdc++.h> #define R register #define ll long lo…
Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) 解码可知,\(n,m\) 中的数字和内部顺序确定了,那么它们的相对位置也可以确定 \(matrix-tree\) 证明: 构建基尔霍夫矩阵,去掉第一行第一列,发现分成四个部分 左上角 \((n-1)\times (n-1)\),主对角线为 \(m\),其余为 \(0\) 右下角 \(m\times…
【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKeyTom_FTD 构造完全二分图的基尔霍夫矩阵的余子式如下(去除第一行第一列):n=3,m=3,空白格皆为0 为了消项形成倒三角,将所有其它n+m-1行全部加到第n行上,则有: 然后将第n行叠加到前面n-1行上,形成倒三角: 虽然不是完全的倒三角,但因为其它排列的积为0所以没有影响,那么主对角线上的乘积就…
【BZOJ4766】文艺计算姬 [暴力]
文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description "奋战三星期,造台计算机". 小W响应号召,花了三星期造了台文艺计算姬. 文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树个数. 更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快速…
bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},计算姬能快 速算出其生成树个数.小W不知道计算姬算的对…
BZOJ 4766: 文艺计算姬
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 456 Solved: 239[Submit][Status][Discuss] Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生成树个数,而文艺计算姬能计算一个带标号完全二分图的生成树 个数.更具体地,给定一个一边点数为n,另一边点数为m,共有…
【BZOJ4766】文艺计算姬(prufer序列)
点此看题面 大致题意: 让你求一个两边各有\(n\)和\(m\)个点的完全二分图有多少个生成树. \(prufer\)序列 这是一道比较经典的利用\(prufer\)序列结论求解答案的计数题. 大致思路 考虑一张二分图求解\(prufer\)序列,由于\(prufer\)序列求解时最后剩下的两个点必定有边相连,因此这两个点必定在二分图两侧. 由于\(prufer\)序列中记录的是每个点相邻的点,也就是说,删去一个左边的点,则就会有一个右边的点被加入\(prufer\)序列. 因此,序列中共会有\…
【ZJOI2017 Round1练习&BZOJ4766】D1T2 文艺计算姬(Prufer编码)
题意:给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},求其生成树个数 mod p. 100%的数据:1 <= n,m,p <= 10^18 思路:这是一道结论(打表找规律)+教你快速幂和乘法 题 结论为:S=n^(m-1)*m^(n-1) 需要注意的是n,m过大,普通的快速幂与乘法会炸 所以需要手写乘法,类似于快速幂的形式将其转换为加法 2017.2.28:%%%CC的证明: 设两边为X侧,Y侧 考虑它们在Prufer序列中出现的位置与取值种数 生成树的最…
【BZOJ4766】文艺计算姬
让你求一个两边各有n和m个点的完全二分图有多少个生成树. 这是一道比较经典的利用prufer序列结论求解答案的计数题. 大致思路考虑一张二分图求解prufer序列,由于prufer序列求解时最后剩下的两个点必定有边相连,因此这两个点必定在二分图两侧.由于prufer序列中记录的是每个点相邻的点,也就是说,删去一个左边的点,则就会有一个右边的点被加入prufer序列.因此,序列中共会有n−1个右边的点和m−1个左边的点.所以答案就是m^(n−1)*n^(m−1) #include<bits/std…
BZOJ.4766.文艺计算姬(Prufer)
题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从m个点中选.so ans = n^{m-1}*m^{n-1} 答案可以根据相对顺序直接构造 //820kb 0ms #include <cstdio> typedef long long LL; LL n,m,p; LL Mult(LL a,LL b) { LL tmp=a*b-(LL)((lon…
bzoj 4766: 文艺计算姬 矩阵树定理
题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) 题解: 构建出基尔霍夫矩阵. 找到n-1阶主子式后将所有的行直接加到第一行上. 可以得到前n个是1,后m个是0的一个行向量. 然后用这个行向量消剩下的n-m-2行. 很容易得到一个上三角矩阵. 将对角线上的值乘起来即为答案. \(ans = n^{m-1}m^{n-1}\) #include <c…
BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看过推到完全图的生成树个数后这道题也不难做 构建出基尔霍夫矩阵,找一个主子式,所有行加起来放一行上,用这一行消消消就发现最后对角线上有$n-1$个$m$和$m-1$个$n$和$1$个$1$ 然后要用快速乘...蒟蒻第一次用快速乘... #include <iostream> using namesp…
@总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part - 4@ @2 - 一些简单的推广@ @3 - 例题与应用@ @4 - prüfer 序列@ @0 - 参考资料@ MoebiusMeow 的讲解(超喜欢这个博主的!) 网上找的另外一篇讲解 @0.5 - 你所需要了解的线性代数知识@ 什么是矩阵? 什么是高斯消元?这个虽然与主题无关,但是求解行列…
一篇自己都看不懂的Matrix tree总结
Matrix tree定理用于连通图生成树计数,由于博主太菜看不懂定理证明,所以本篇博客不提供\(Matrix\ tree\)定理的证明内容(反正这个东西背结论就可以了是吧) 理解\(Matrix\ tree\)定理需要一定的线性代数知识(当然不会也没关系) a.前置芝士--行列式 稍微费点笔墨写写行列式 行列式是一个\(N \times N\)的方阵,比如说下面就是一个\(3 \times 3\)的行列式 \(\left|\begin{array}{cccc} 1 & 6 & 9 \\…
矩阵树定理(Matrix Tree)学习笔记
如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/6420935.html http://blog.csdn.net/Marco_L_T/article/details/72888138 首先是行列式对几个性质(基本上都是用数学归纳法证): 1.交换两行(列),行列式取相反数 2.由1.得若存在两行(列)完全相同则行列式为0 3.上(下)三角行列式即主…
[bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第 一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点…
数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而MatrixTree没人证我就写一下吧-- Matrix Tree结论 Matrix Tree的结论网上可多,大概一条主要的就是,图中生成树的数量等于 \(V-E\) 的任一余子式,其中: \(V\) 为对角阵,第 \(i\) 个元素为点 \(i\) 的度数 \(E\) 为对称阵,对角线为零且 \(E_{i,…
bzoj 4765: 普通计算姬
Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些 .普通计算机能计算数列区间和,而普通计算姬能计算树中子树和.更具体地,小G的计算姬可以解决这么个问题 :给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权 值和.计算姬支持下列两种操作: 1 给定两个整数u,v,修改点u的权值为v. 2 给定两个整数l,r,计算sum[l]+sum[l+1]+...…
BZOJ_4765_普通计算姬_分块+dfs序+树状数组
BZOJ_4765_普通计算姬_分块 Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些 .普通计算机能计算数列区间和,而普通计算姬能计算树中子树和.更具体地,小G的计算姬可以解决这么个问题 :给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权 值和.计算姬支持下列两种操作: 1 给定两个整数u,v,修改点u的权值为v. 2 给定两个整数l,r,计算…
SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只有一条路径. \(Solution\) 生成树计数 直接上Matrix Tree 无解情况别忘了判 MatrixTree定理大体见这吧,证明别的应用什么的先不管了. 基尔霍夫矩阵=度数矩阵-边矩阵. #include <cmath> #include <cstdio> #include…
BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元.) //注意题目是将所有房间(这些才是点)连成一棵树,墙非节点,即行列式中只存在表示房间的点.否则就很可能无解了.. #include <cstdio> #include <algorithm> #define mod (1000000000) const int N=103,way[…
BZOJ 4765 普通计算姬 (分块 + BIT)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1547 Solved: 329[Submit][Status][Discuss] Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些 .普通计算机能计算数列区间和,而普通计算姬能计算树中子树和.更具体地,小G的计算姬可以解决这么个问题 :给定一棵n个节点的带权树,节点编号为1到n,以roo…
2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些.普通计算机能计算数列区间和,而普通计算姬能计算树中子树和.更具体地,小G的计算姬可以解决这么个问题:给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权值和.计算姬支持下列两种操作: 1 给定两个整…
BZOJ4765: 普通计算姬
BZOJ4765: 普通计算姬 题目描述 传送门 题目分析 求的和非常奇怪,不具有连续性,所有上树的数据结构全死了. 考虑分块,思考对于一段连续的询问区间可以直接询问整块,零散块可以在树上dfs序暴力求出. 使用预处理打标记的方式搞定每个点对每个块的影响是多少.这样修改的时候直接针对差值相应变动每个块的值就可以了. 那么dfs序上的值应该怎么快速查询,可以对dfs序进行另外的分块,同时使用前缀和来快速回答每一组询问.时间复杂度就可以平衡到\(O(\sqrt n)\) 是代码呢 #include…
[BZOJ4765]普通计算姬(分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 1725 Solved: 376[Submit][Status][Discuss] Description "奋战三星期,造台计算机".小G响应号召,花了三小时造了台普通计算姬.普通计算姬比普通计算机要厉害一些 .普通计算机能计算数列区间和,而普通计算姬能计算树中子树和.更具体地,小G的计算姬可以解决这么个问题 :给定一棵n个节点的带权树,节点编号为1到n,以roo…
【Foreign】无聊的计算姬 [Lucas][BSGS]
无聊的计算姬 Time Limit: 10 Sec Memory Limit: 256 MB Description Input Output Sample Input 6 2 2 3 4 3 2 7 9 2 1 2 9 3 1 6 7 1 5 3 7 1 9 2 8 Sample Output Math Error 3 Math Error 6 6 1 HINT Solution 我们可以分步骗分.(Task1直接快速幂即可.) 对于前50分: 对于Task2,我们直接暴力枚举,出现一个重复…