ZOJ 3537 Cake(凸包判定+区间DP)】的更多相关文章

Cake Time Limit: 1 Second Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut…
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoin…
题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+w[i][k]+w[j][k]); w[i][j]代表i到j点的切割费用. dp[i][j]:表示以i到j点的最小费用.则可把凸边行分成三个部分的费用.两个凸边行(i,k),(k,j)和两条边的费用(i,k),(j,k),k为枚举的三角形顶点. Zoj 3537 Cake (DP_最优三…
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形(凸包)则不能切,直接输出"I can't cut."切多边形时每次只能在顶点和顶点间切,每切一次的花费为 cost(i, j) = |xi + xj| * |yi + yj| % p.问把多边形切成最多个不相交三角形的最小代价是多少. 解题思路:先求出凸包,接着可以用区间DP解决,设dp…
题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价是多少. 思路:首先判断多边形是否是凸多边形,之后就是区间dp了. 求出凸包后,按逆时针来看. 设置dp[i][j]为从顶点i到顶点j所围成凸多边形的最优解. 枚举切点k (i < k < j) dp[i][j] = min(dp[i][k] + dp[k][j] + cost[i][k] + c…
Cake Time Limit: 1 Second      Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of eac…
区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> using namespace std; ; const int INF = 0x7FFFFF…
https://vjudge.net/problem/ZOJ-3469 题意:在一条直线上有一个餐厅和n个订餐的人,每个人都有随时间上升的不满意值,从餐厅出发,计算出送完时最小的不满意值总和. 思路:这道题和UVa 1632这道题目很像,只不过1632可以从任一点出发,而这题必须从餐厅出发.1632每个坐标几秒之后就会消失,这题是每分钟不满意值会上升,比较类似,都是挺不错的区间DP题. d[i][j][0]代表的是在送完i~j这个区间的最小不满意值,并且此时人处于左端,d[i][j][1]则是人…
这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三角形的最小费用,那么dp[i][j] = min(dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]),其中,(j >= i+ 3,i+1<=k<=j-1,cost[i][k]为连一条i到k的线的费用). 上一个图,来自博客http://blog.csdn.net…
下面是别人的解题报告的链接,讲解很详细,要注意细节的处理...以及为什么可以这样做 http://blog.csdn.net/woshi250hua/article/details/7824433 我的代码: //其中求凸包用的是Andrew扫描算法,复杂度主要为排序O(n*logn),扫描为O(n) #include <cstdio> #include <algorithm> #define INF 100000000 #define min(a,b) a<b?a:b; u…