更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集构造到神经网络搭建各个方面对现有代码进行修改. 神经网络的结构: 1.输入28*28=784维行向量 2.卷积层:卷积核大小5*5,共32个,激活函数ReLu 3.池化层:最大值池化,2*2窗口 4.卷积层:卷积核大小5*5,共64个,激活函数ReLu 5.池化层:最大值池化,2*2窗口 6.全连接…