首先AUC值是一个概率值,当你随机挑选一个正样本以及负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值,AUC值越大,当前分类算法越有可能将正样本排在负样本前面,从而能够更好地分类. AUC计算 最直观的,根据AUC这个名称,我们知道,计算出ROC曲线下面的面积,就是AUC的值.事实上,这也是在早期 Machine Learning文献中常见的AUC计算方法.由于我们的测试样本是有限的.我们得到的AUC曲线必然是一个阶梯状的.因此,计算的AUC也就是这些…