keras训练大量数据的办法】的更多相关文章

最近在做一个鉴黄的项目,数据量比较大,有几百个G,一次性加入内存再去训练模青型是不现实的. 查阅资料发现keras中可以用两种方法解决,一是将数据转为tfrecord,但转换后数据大小会方法不好:另外一种就是利用generator,先一次加入所有数据的路径,然后每个batch的读入 # 读取图片函数 def get_im_cv2(paths, img_rows, img_cols, color_type=1, normalize=True): ''' 参数: paths:要读取的图片路径列表 i…
1. 训练 # --coding:utf--- import os import sys import glob import argparse import matplotlib.pyplot as plt from keras import __version__ from keras.applications.inception_v3 import InceptionV3, preprocess_input #from keras.applications.inception_v3_mat…
用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时可直接读取文本文件),同时也涉及了plt画图方法 ps:以下代码基于网上的一段程序修改完成,如有侵权,请联系我哈! 上代码: from keras import Sequential, initializers, optimizers from keras.layers import Activat…
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) 即损失函数用的是categorical_crossentropy所以,在pycharm中双击shift键,寻找该函数,会出现keras.loss模块中有该函数,进入该函数后, 原函数为: def categorical_crossent…
scipy.misc.imresize 不同于普通的reshape, imresize不是单纯的改变图像矩阵的维度,而是能将图片重采样为指定像素,这样给深度学习中训练图像数据带来方便. import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage %matplotlib inline num_px = 64 my…
Solr4.6的管理界面上,假设不配置数据导入的功能,将看不到清除数据的button.我表示非常遗憾,正好我们线上没有配置数据导入的功能. 网上搜到的各种清理solr数据的HTTP请求,拿到我的solr4.6上測试,报service not found.看了这些请求都是在solr4之前的版本号上执行的.找到了个Solr4.2的Http请求,改了改參数,才干够用. http://solr1.chat.com/staff/update/?stream.body=<delete><query&…
Solr4.6的管理界面上,如果不配置数据导入的功能,将看不到清除数据的按钮.我表示很遗憾,正好我们线上没有配置数据导入的功能. 网上搜到的各种清理solr数据的HTTP请求,拿到我的solr4.6上测试,报service not found.看了这些请求都是在solr4之前的版本上运行的.找到了个Solr4.2的Http请求,改了改参数,才可以用. http://solr1.chat.com/staff/update/?stream.body=<delete><query>*:*…
百度为何开源深度机器学习平台?   有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举.   5月20日,百度在github上开源了其深度机器学习平台.此番发布的深度机器学习开源平台属于“深盟”的开源组织,其核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院.华盛顿大学.纽约大学.香港科技大学,卡耐基·梅陇大学等知名公司和高校. 通过这一开源平台,世界各地的开发者们可以免费获得更优质和更容易使用的分布式机器学习算法源码,从…
1. [深度学习] Keras 如何使用fit和fit_generator https://blog.csdn.net/zwqjoy/article/details/88356094 ps:解决样本数量不均衡:fit_generator中设置参数class_weight = 'auto' 2. 实现批量数据增强 | keras ImageDataGenerator使用 https://www.jianshu.com/p/3da7ffb5d950 ps:数据量不足时一定要加上数据增强…
官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求.但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法. 步骤0:导入相关 import random import numpy as np from keras.preprocessing.image import load_img,img_to_array from keras.preprocessing.image import ImageDat…