花式求LCA】的更多相关文章

设树上有两点x.y,要求他们的lca(最近公共祖先) 1.倍增求LCA: 先预处理出树上每个点的向上2^k的祖先. 再看x.y:先把深度深的倍增跳到和深度浅的一样的深度,判断是否在同一点:是,该点即为lca:不是,就将两点一起倍增向上跳到最高的不同的两点,它们的父亲就是lca. 正确性:数可用二进制表示. 2.RMQ求LCA: https://www.luogu.org/blog/hicc0305/solution-p3379 正确性:从f小的点x到f大的点y,经过了:x的一部分(或全部)子树,…
树链剖分中各种数组的作用: siz[]数组,用来保存以x为根的子树节点个数 top[]数组,用来保存当前节点的所在链的顶端节点 son[]数组,用来保存重儿子 dep[]数组,用来保存当前节点的深度 fa[]数组,用来保存当前节点的父亲 tid[]数组,用来保存树中每个节点剖分后的新编号 rank[]数组,用来保存当前节点在线段树中的位置 树链剖分求LCA据说很快QWQ,反正我在洛谷上评测的时候比倍增整整快了3分之1. 蓝后我们来说怎么用树链剖分求: 1,第一种情况我们要比较的数在一条链上,比如…
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳2^j次后的节点 可以转移为 father[i][j]=father[father[i][j-1]][j-1] (此处注意循环时先循环j,再循环i) 然后dfs求出各个点的深度depth 整体思路: 先比较两个点的深度,如果深度不同,先让深的点往上跳,浅的先不动,等两个点深度一样时,if 相同 直接…
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4)一个点地一个点地往上跳,直到到某个点(3)和另外那个点(5)的深度一样 然后两个点一起一个点地一个点地往上跳,直到到某个点(就是最近公共祖先)两个点“变”成了一个点 不过有没有发现一个点地一个点地跳很浪费时间? 如果一下子跳到目标点内存又可能不支持,相对来说倍增的性价比算是很高的 倍增的话就是一次…
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 5 5 4 3 1 2 4 5…
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 复制 5 5 4 3 1 2 4…
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 复制 5 5 4 3 1 2 4…
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每行包含两个正整数x.y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树). 接下来M行每行包含两个正整数a.b,表示询问a结点和b结点的最近公共祖先. 输出格式: 输出包含M行,每行包含一个正整数,依次为每一个询问的结果. 输入输出样例 输入样例#1: 5 5 4 3 1 2 4 5…
先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你不会吧:unamused:...) 思想 树上倍增嘛,顾名思义就是倍增 相信倍增大家都不默认,著名的rmq问题的$O(n*logn)$的解法就是利用倍增实现的 在树上倍增中,我们用 $f[j][i]$表示第$j$号节点,跳了$2^j$步所能到达的节点 $deep[i]$表示$i$号节点的深度 然后用…
题目链接 rmq求LCA,interesting. 一直没有学这玩意儿是因为CTSC的Day1T2,当时我打的树剖LCA 65分,gxb打的rmq LCA 45分... 不过rmq理论复杂度还是小一点的,就学一下把. RMQ求LCA 我们要用到三个数组 \(dfn[i]\):第\(i\)个节点位置的时间戳 \(id[i][j]\):在欧拉序中\(i\)到\(i + 2^j - 1\)这段区间内深度最小的节点编号 \(dep[i]\):第\(i\)个节点的深度 实际上用到了一个性质: 对于任意两点…
对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v][k] = anc[anc[v][k - 1]][k - 1]  (从v向上2k步即为从v向上2(k - 1)步再向上2(k - 1)步) 求出其他anc[v][k]的值 lca(u, v)函数寻找u和v的lca, 首先把u和v调整到一个高度.如果此时u和v重合,那么这就是我们要找的lca,如果他…
LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m),查询O(1) 它的主要思想是dfs和并查集 1.输入数据,找出根节点(或输入的)并将图存起来 2.输入需要查找的每一对点(两个点),也存起来(也存成图) 3.从根节点开始向它的每一个孩子节点进行深搜 4.同时开一个bool类型的数组记录此节点是否搜索过 5.搜索到p节点时先将p标记为已经搜索过了…
题目描述 众所周知,Hzwer学长是一名高富帅,他打算投入巨资发展一些小城市. Hzwer打算在城市中开N个宾馆,由于Hzwer非常壕,所以宾馆必须建在空中,但是这样就必须建立宾馆之间的连接通道.机智的Hzwer在宾馆中修建了N-1条隧道,也就是说,宾馆和隧道形成了一个树形结构. Hzwer有时候会花一天时间去视察某个城市,当来到一个城市之后,Hzwer会分析这些宾馆的顾客情况.对于每个顾客,Hzwer用三个数值描述他:(S, T, V)表示该顾客这天想要从宾馆S走到宾馆T,他的速度是V. Hz…
1.tarjan求lca 思想: void tarjan(int u,int f){ for(int i=---){//枚举边 if(v==f) continue; dfs(v); //继续搜 unionn(v);//合并 vis[v]=; //标记 } for(int i){// 和u有关的询问 if(vis[v]) lca=find(v); //若访问过,lca为find(v) } } 模板代码 #include<bits/stdc++.h> #define rep(i,x,y) for(…
/* 节点维护的信息多样 如果用树状数组维护到根节点的边权或者点权, 可以直接插入点权和边权值,不需要预处理, 但是记得一定要使用ot[]消除影响.即差分. Housewife Wind 这个坑踩得死死得. 然后如果带修改,也可以线段树维护. 打上dfs序后, 其他的就是区间问题了. 然后查询 修改的时候,把dfs序与点或者边对应转换一下就OK了. */ int deep[maxn]; ]; int in[maxn]; // dfs序 入 int ot[maxn]; // dfs序 出 int…
http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 21250    Accepted Submission(s): 8368 Problem Description There are n houses in the…
LCA问题有多种求法,例如倍增,Tarjan. 本篇博文讲解如何使用Tarjan求LCA. 如果你还不知道什么是LCA,没关系,本文会详细解释. 在本文中,因为我懒为方便理解,使用二叉树进行示范. LCA是什么,能吃吗? LCA是树上最近公共祖先问题. 最近公共祖先就是树上有两个结点,找一个结点,是他们的公共祖先,并且离他们两个结点最近. 例如这是一棵树: 树上 4,7 两个结点的 LCA 就是 2 了. 1 虽然也是他们的公共祖先,但并不是最近的. 再举个例子,8,5 的祖先是 5.8,6 的…
倍增求LCA LCA函数返回(u,v)两点的最近公共祖先 #include <bits/stdc++.h> using namespace std; *; struct node { int v,val,next; node(){} node(int vv,int va,int nn):v(vv),val(va),next(nn){} }E[N]; int n,m; ],dep[N]; void init() { tot = ; memset(head,,sizeof(head)); mems…
                                                                                                                                                         ----代码都是  HDU 2586  "How far away" 为例     倍增求LCA 树上倍增法. 设F[x,k] 表示x的2的k次方辈祖先,即 由x向上走2的k次方到达的…
How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14685    Accepted Submission(s): 5554 Problem Description There are n houses in the village and some bidirectional roads connecting…
倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> #include<cmath> #include<cstring> using namespace std; int t,n,cnt,m; int x,y; ][],p,root; ]; ]; ]; ; struct node { int next,to; }e[*]; inline…
(YYL: LCA 有三种求法, 你们都知道么?) (众神犇: 这哪里来的傻叉...) 1. 树上倍增 对于求 LCA, 最朴素的方法是"让两个点一起往上爬, 直到相遇", "如果一开始不在同一深度, 先爬到同一深度". 树上倍增求 LCA 的方法同样基于这个道理, 只不过利用了倍增思想从而加速了"向上爬"的操作. 也就是说, 每次向上爬的高度不是 1, 而是 2 的幂. 我们用 $f(i, j)$ 表示从节点 $i$ 向上爬 $2^j$ 的高度…
思路 运用树上倍增法可以高效率地求出两点x,y的公共祖先LCA 我们设f[x][k]表示x的2k辈祖先 f[x][0]为x的父节点 因为从x向根节点走2k 可以看成从x走2k-1步 再走2k-1步 所以对于1≤k≤logn 有f[x][k]=f[f[x][k-1]][k-1] (类似二分思想) 预处理: 因此我们可以对树进行遍历后得到所有f[x][0] 再计算出f数组的所有值 求LCA: 设dep[x]为x的深度 设dep[x]≥dep[y](否则 可以交换x和y) 使用二进制拆分 把x和y调整…
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵树中的n-1条边为“树边” 其他m-n+1条边为“非树边” 枚举每条非树边(x,y,z)添加到最小生成树中 可以在x,y之间构成一个环 设x,y之间的路径最大值为val1 次大值为val2(val1>val2) 则有以下两种情况 当z>val1时 则把val1对应的边换成(x,y,z) 得到一个候…
定义LCA,最近公共祖先,是指一棵树上两个节点的深度最大的公共祖先.也可以理解为两个节点之间的路径上深度最小的点.我们这里用了倍增的方法求了LCA.我们的基本的思路就是,用dfs遍历求出所有点的深度.f[i][j]数组用来求的是距离节点i,距离2^j的祖先.可以知道,f[i][0]就是它的直接父亲.然后通过倍增的思路求出father数组的所有元素.然后进行lca.求lca的基本思路是:先让深度较大的点向上跳,然后x和y再同时向上跳2的幂,总会跳到这样两个点,他们的父亲结点是同一个点,那就是x和y…
The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 roads connecting the cities. There is a unique path between each pair of different cities, and we know the exact length of each road. Write a program th…
倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往上走 2j 个节点 求 LCA 的时候先倍增让两点深度一样,再倍增求 另外丢两个链接,这两个有详细讲解 ST 算法 http://www.cnblogs.com/hadilo/p/5837517.html Tarajan 算法 http://www.cnblogs.com/hadilo/p/5840…
题意 三倍经验哇咔咔 #137. 最小瓶颈路 加强版 #6021. 「from CommonAnts」寻找 LCR #136. 最小瓶颈路 Sol 首先可以证明,两点之间边权最大值最小的路径一定是在最小生成树上 考虑到这题是边权的最大值,直接把重构树建出来 然后查LCA处的权值即可 输入文件过大,需要用RMQ算法求LCA // luogu-judger-enable-o2 #include<bits/stdc++.h> const int MAXN = 1e6 + 10; using name…
tarjan算法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 这里我们使用tarjan算法离线算法解决这个问题. 离线算法,是指首先读入所有的询问(求一次LCA叫做一次询问),然后重新组织查询处理顺序以便得到更高效的处理方法.Tarjan算法是一个常见的用于解决LCA问题的离线算法,它结合了深度优先遍历和并查集,整个算法为线性处理时间. 总思路就是每进入一个节点u的深搜,就把整个树的一部分看作以节点u为根节点的小树…
这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法就无法使用了 另附上在线ST算法的链接: http://www.cnblogs.com/hadilo/p/5837517.html 直接上伪代码: 源代码中将询问用栈分节点一个个压入,而且克隆了单次询问,如询问 1 5 节点,则将 5 压入 1 的栈中,并且将 5 压入 1 的栈中 因为当询问时会有…