java作业利用递归解决问题】的更多相关文章

第一题 利用递归求组合数 设计思想 (1)首先根据公式求,利用递归完成阶乘函数的初始化,并且通过调用阶乘,实现公式计算 (2)递推方法,根据杨辉三角的特点,设置二维数组,从上到下依次保存杨辉三角所得数,并且每次判断,行列和用户想要得到数的行列是否相同 (3)递归方法,递归调用函数,通过地递推公式从后往前推导  求C[n,k]=C[n-1,k-1]+C[n-1,k],根据这个公式直到n=1或者k=0:或者n=k相等时结束 程序流程图 程序源代码 import java.util.Scanner;…
Java中利用随机数的猜拳游戏,实现非常简单,重难点在于随机数的产生. 首先GameJude类是用于判断输赢的一个类: package testGame; public class GameJudge { private String marks1 = "拳头"; private String marks2 = "拳头"; private int personCout = 0; private int computerCout = 0; private int co…
再我们现在项目中Spring框架是目前各大公司必不可少的技术,而大家都知道去怎么使用Spring ,但是有很多人都不知道SpringIoc底层是如何工作的,而一个开发人员知道他的源码,底层工作原理,对于我们对项目的理解是有非常大的帮助的,有可能工作了两三年的中级工程师,乃至四五年的,只知其然,却不知其所以然.我的一个盆友,今年年初以实习生的身份去北京面试 ,面试官让我的朋友说Spring源码,作为一个实习生,就要去知道Spring的源码.虽然我们可以不用知道,也可以做项目,但他会成为我们面试结果…
https://blog.csdn.net/huangwenyi1010/article/details/71249258  java模板引擎freemarker代码生成器 更多 个人分类: 一步一步学Java一步一步提高效率一步一步学Freemarker   版权声明:我已委托“维权骑士”(rightknights.com)为我的文章进行维权行动 https://blog.csdn.net/huangwenyi1010/article/details/71249258 开心一笑 [1.你以为我…
Ⅰ.三角数字 首先我们来看一组数字:1,3,6,10,15,21.....,在这个数列中第n项是由n-1项加n得到的,这个序列中的数字称为三角数字因为他们可以形象化地表示成一个三角形排列.如下图 通过上面的图首先我们就可以想到使用循环来查找第n项的数值,下面代码就是从高度为n的列加到高度为1的列 int triangle(int n){ int total = 0; while(n>0){ total = total + n; --n; } return total; } 上面方法循环了n次,第…
package class20190923; import java.util.Scanner; public class Classtext { private static int n=0; private static String str1,str2; public static void main(String[] args) { String str1,str2; Scanner sc = new Scanner(System.in); str1=sc.nextLine(); if(…
Java中的递归运算是一种在自己的方法内部调用自己的方法 递归的设计思想是:把一个复杂的问题,分解为若干个等同的子问题,重复执行,直到之问题能够简单到直接求解,这样复杂的问题就得以解决. 递归运算有两个特点:第一,递归的出口:第二,逐步向出口逼近的递推方法 example:求1+2+3+4+5的和 public class Test { public Integer sum(int n) { if(n == 1 || n == 0) { return n; } return n + sum(n-…
作业一: 文件显示列表框. 增加了下拉式组合框,text区域设置颜色为红色. import javax.swing.*; import java.awt.*; import java.io.File; public class FileUtil extends JFrame{ /** * @param args */ public static String listDirectory(File dir) throws IllegalAccessException{ if(!dir.exists…
Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析方法2 递归下降是现阶段主流的语法分析方法,2 于是我们可以把上面的语法改写成如下形式: 1)       Operator="+" | "-" | "*" | "/" 2)       Expression=<数字>…
/* * 递归:方法定义中调用方法本身的现象 * * 方法的嵌套调用,这不是递归. * Math.max(Math.max(a,b),c); * * public void show(int n) { * if(n <= 0) { * System.exit(0); * } * System.out.println(n); * show(--n); * } * * 注意事项: * A:递归一定要有出口,否则就是死递归 * B:递归的次数不能太多,否则就内存溢出 * C:构造方法不能递归使用 *…