题意:给出两个相离的圆O1,O2和圆外一点P,求构造这样的圆:同时与两个圆相外切,且经过点P,输出圆的圆心和半径 分析:画图很容易看出这样的圆要么存在一个,要么存在两个:此题直接解方程是不容易的,先看看反演的定义:已知一圆C,圆心为O,半径为r,如果P与P'在过圆心O的直线上,且,则称P与P'关于O互为反演. 反演的性质: 首先设出反演圆心O和反演半径R 1.圆外一点P与圆内一点P'会一一对应的反演OP*OP'=R*R 2.经过O的圆,反演后成为不经过O的一条直线 3.不经过O的圆,反演后成为另…