一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万.为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构.数据组织方式说起. 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛.在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是512字节,而文件系统(例如XFS/EXT4)他的最小单元是块,一个块的大小是4k,而对于我们的InnoDB存储引擎也有自己的最小储存单元——页(Pag…
这里我们先假设B+树高为2,即存在一个根节点和若干个叶子节点,那么这棵B+树的存放总记录数为:根节点指针数*单个叶子节点记录行数. 上文我们已经说明单个叶子节点(页)中的记录数=16K/1K=16.(这里假设一行记录的数据大小为1k,实际上现在很多互联网业务数据记录大小通常就是1K左右). 那么现在我们需要计算出非叶子节点能存放多少指针? 其实这也很好算,我们假设主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,这样一共14字节,我们一个页中能存放多少这样的单…
阅读本文大概需要 5 分钟. 作者:李平 | 来源:个人博客 一.InnoDB 一棵 B+ 树可以存放多少行数据? InnoDB 一棵 B+ 树可以存放多少行数据? 这个问题的简单回答是:约 2 千万. 为什么是这么多呢? 因为这是可以算出来的,要搞清楚这个问题,我们先从 InnoDB 索引数据结构.数据组织方式说起. 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛. 在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是 512 字节,而文件系统…
一.InnoDB一棵B+树可以存放多少行数据?(约2千万) 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛.在计算机中磁盘存储数据最小单元是扇区,一个扇区的大小是512字节,而文件系统(例如XFS/EXT4)他的最小单元是块,一个块的大小是4k,而对于我们的InnoDB存储引擎也有自己的最小储存单元——页(Page),一个页的大小是16K. 磁盘扇区.文件系统.InnoDB存储引擎都有各自的最小存储单元. 在MySQL中我们的InnoDB页的大小默…
https://www.jianshu.com/p/3578beed5a68 https://www.cnblogs.com/tongongV/p/10952102.html InnoDB 存储引擎最小储存单元——页(Page),一个页的大小是 16K.…
如图,为B+树组织数据的方式: 实际存储时当然不会每个节点只存3条数据. 以InnoDB引擎为例,简单计算一下一颗B+树可以存放多少行数据. B+树特点:只有叶子节点存储数据,而非叶子节点存放的是用来找到叶子节点数据的索引(如上图:key和指针) InnoDB存储引擎的最小存储单元为16k(就像操作系统的最小单元为4k 即1页),在这即B+树的一个节点的大小为16k 假设数据库一条数据的大小为1k,则一个节点可以存储16条数据 而非叶子节点,key一般为主键假设8字节,指针在InnoDB中是6字…
索引类似于书的目录,他是帮助我们从大量数据中快速定位某一条或者某个范围数据的一种数据结构.有序数组,搜索树都可以被用作索引.MySQL中有三大索引,分别是B+树索引.Hash索引.全文索引.B+树索引是最最重要的索引,Hash索引和全文索引用的并不是太多,InnoDB不支持Hash索引,不过存储引擎内部去定位数据页时会使用Hash索引, 这不是本文重点.本文将简单介绍B+树索引. B+树的基本结构 这里不对B+树做精确定义,直接给出一个B+树的示意图并做一些解释说明. 图1:B+树的基本结构(来…
1.文件很大,不可能全部存储在内存中,所以要存在磁盘上 2.索引的组织结构要尽量减少查找过程中磁盘I/O的存取次数(为什么用B-/+Tree,还跟磁盘存取原理有关) 3.B+树所有的data域在叶子节点,一般来说都会进行一个优化,就是将所有的叶子节点用指针串起来,这样遍历叶子节点就能获得全部数据 二.什么是聚簇索引 像innodb中,主键的索引结构中,既存储了主键值,有存储了行数据,这种数据成为‘聚簇索引’ 三.为什么MongoDB采用B树索引,而mysql用B+树做索引 b+树只有叶节点存放数…
B+树索引介绍 B+树索引的本质是B+树在数据库中的实现.但是B+树索引有一个特点是高扇出性,因此在数据库中,B+树的高度一般在2到3层.也就是说查找某一键值的记录,最多只需要2到3次IO开销.按磁盘每秒100次IO来计算,查询时间只需0.0.2到0.03秒.   数据库中B+树索引分为聚集索引(clustered index)和非聚集索引(secondary index).这两种索引的共同点是内部都是B+树,高度都是平衡的,叶节点存放着所有数据.不同点是叶节点是否存放着一整行数据.   (1)…
搞了一晚上,错了,以后回头再来看 /* 对于每次更新,先处理其儿子方向,再处理其父亲方向 处理父亲方向时无法达到根,那么直接更新 如果能达到根,那么到兄弟链中去更新,使用bfs序 最后,查询结点v的结果就是dfs序线段树上的查询值+bfs线段树上的查询值 */ #include<iostream> #include<cstring> #include<vector> #include<queue> using namespace std; #define m…