读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
论文地址:Deep Residual Learning for Image Recognition ResNet--MSRA何凯明团队的Residual Networks,在2015年ImageNet上大放异彩,在ImageNet的classification.detection.localization以及COCO的detection和segmentation上均斩获了第一名的成绩,而且Deep Residual Learning for Image Recognition也获得了CVPR20…
Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新的网络结构来解决当网络层数过高之后更深层的网络的效果没有稍浅层网络好的问题,并且做出了适当解释,用ResNet很好的解决了这个问题. 背景 深度卷积神经网络已经在图像分类问题中大放异彩了,近来的研究也表明,网络的深度对精度起着至关重要的作用.但是,随着网络的加深,有一个问题值得注意,随着网络一直堆叠…
ResNet网络,本文获得2016 CVPR best paper,获得了ILSVRC2015的分类任务第一名. 本篇文章解决了深度神经网络中产生的退化问题(degradation problem).什么是退化问题呢?如下图: 上图所示,网络随着深度的增加(从20层增加到56层),训练误差和测试误差非但没有降低,反而变大了.然而这种问题的出现并不是因为过拟合(overfitting). 照理来说,如果我们有一个浅层的网络,然后我们可以构造一个这样的深层的网络:前面一部分的网络和浅层网络一模一样,…
本文为您解读SPP-net: Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Motivation 神经网络在计算机视觉方面的成功得益于卷积神经网络,然而,现有的许多成功的神经网络结构都要求输入为一个固定的尺寸(比如224x224,299x299),传入一张图像,需要对它做拉伸或者裁剪,再输入到网络中进行运算. 然而,裁剪可能会丢失信息,拉伸会使得图像变形,这些因素都提高了视觉任务的门槛,…
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feature map分别对应不同尺度的固定anchor 回归所有anchor对应的class和bounding box Model 输入:300x300 经过VGG-16(只到conv4_3这一层) 经过几层卷积,得到多层尺寸逐渐减小的feature map 每层feature m…
Fast RCNN是对RCNN的性能优化版本,在VGG16上,Fast R-CNN训练速度是RCNN的9倍, 测试速度是RCNN213倍:训练速度是SPP-net的3倍,测试速度是SPP-net的3倍,并且达到了更高的准确率,本文为您解读Fast RCNN. Overview Fast rcnn直接从单张图的feature map中提取RoI对应的feature map,用卷积神经网络做分类,做bounding box regressor,不需要额外磁盘空间,避免重复计算,速度更快,准确率也更高…
转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和Multi task,那么RPN(Region Proposal Networks)就是Faster RCNN的最大亮点了.使用RPN产生的proposals比selective search要少很多(300vs2000),因此也一定程度上减少了后面detection的计算量. Introducti…
CVPR2016: You Only Look Once:Unified, Real-Time Object Detection 转载请注明作者:梦里茶 YOLO,You Only Look Once,摒弃了RCNN系列方法中的region proposal步骤,将detection问题转为一个回归问题 网络结构 输入图片:resize到448x448 整张图片输入卷积神经网络(24层卷积+2层全连接,下面这张示意图是Fast YOLO的) 将图片划分为SxS个格子,S=7 输出一个SxS大小的…
Reference: [1]Y. Tao, S. Papadopoulos, C. Sheng, K. Stefanidis. Nearest Keyword Search in XML Documents. [2]M. Qiao, L. Qin, H. Cheng, J. X. Yu, W. Tian. Top-K Nearest Keyword Search on Large Graphs.       假设原树如Figure4所示:节点上有t的即为关键词节点:节点上的数字表示在树的先序遍历…