InputFormat简介 InputFormat:管控MR程序文件输入到Mapper阶段,主要做两项操作:怎么去切片?怎么将切片数据转换成键值对数据. InputFormat是一个抽象类,没有实现怎么切片,怎么转换,由它的子类实现.其中InputFormat的默认实现类是FileInputFormat,其也是一个抽象类,没有具体实现,最终是由FileInputFormat的子类去实现的.子类一共有五个,每一个子类的分片机制和转换成key-value键值对数据的格式都不一样,其中默认使用的是  …
目录 1 InputFormat数据输入 1.1 切片与MapTask并行度决定机制 问题引出 MapTask并行度决定机制 Job提交流程源码 切片源码 1.2 FileInputFormat切片机制 1.3 TextInputFormat切片机制 1.4 CombineTextInputFormat切片机制 1.5 案例实操 需求 实现过程 MapReduce 框架原理 1.InputFormat可以对Mapper的输入进行控制 2.Reducer阶段会主动拉取Mapper阶段处理完的数据…
目前CSDN,博客园,简书同步发表中,更多精彩欢迎访问我的gitee pages 目录 MapReduce精通(二) MapReduce框架原理 MapReduce工作流程 InputFormat数据输入 切片与MapTask并行度决定机制 Job提交流程源码和切片源码详解 FileInputFormat切片机制 CombineTextInputFormat切片机制 CombineTextInputFormat案例实操 FileInputFormat实现类 KeyValueTextInputFo…
MapReduce框架原理 3.1 InputFormat数据输入 3.1.1 切片与MapTask并行度决定机制 1.问题引出 MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度. 思考:1G的数据,启动8个MapTask,可以提高集群的并发处理能力.那么1K的数据,也启动8个MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度? 2.MapTask并行度决定机制 数据块:Block是HDFS物理上把数据分…
目录 4.OutputFormat数据输出 OutputFormat接口实现类 自定义OutputFormat 自定义OutputFormat步骤 自定义OutputFormat案例 需求 需求分析 案例实现 输出结果 MapReduce 框架原理 1.InputFormat可以对Mapper的输入进行控制 2.Reducer阶段会主动拉取Mapper阶段处理完的数据 3.Shuffle可以对数据进行排序.分区.压缩.合并,核心部分. 4.OutPutFomat可以对Reducer的输出进行控制…
package com.zhen.mysqlToHDFS; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.SQLException; import org.apache.hadoop.conf.Configuration; im…
MapReduce自定义InputFormat和OutputFormat案例 自定义InputFormat 合并小文件 需求 无论hdfs还是mapreduce,存放小文件会占用元数据信息,白白浪费内存,实践中,又难免面临处理大量小文件的场景 优化小文件的三种方式 1.在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS 2.在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并 3.在mapreduce处理时,可采用combineInputFormat提高效率 用代码…
首先要说明的是,关于老师给的实验要求,我在网上看到了原文,原文地址:https://blog.csdn.net/qq_41035588/article/details/90514824,有兴趣的同学可以去看一下.本篇博客是在此基础上进行的重写. 刚刚按照老师给的实验要求完成了一次关于MapReduce的实验,说是完成,其实也就是按照老师给的程序教程去配置关于MapReduce的一些环境,学习一些关于MapReduce的基本操作,并且学会搭建和运行MapReduce程序.现在将实验内容和代码按照要…
Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBI…
Hadoop生态圈-使用MapReduce处理HBase数据 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.对HBase表中数据进行单词统计(TableInputFormat)  1>.准备环境 create_namespace 'yinzhengjie' create 'yinzhengjie:WordCount','f1','f2' put 'yinzhengjie:WordCount', 'row1', 'f1:line', 'hello wold tom how…