FSAF深入地分析FPN层在训练时的选择问题,以超简单的anchor-free分支形式嵌入原网络,几乎对速度没有影响,可更准确的选择最优的FPN层,带来不错的精度提升   来源:晓飞的算法工程笔记 公众号 论文: Feature Selective Anchor-Free Module for Single-Shot Object Detection 论文地址:https://arxiv.org/abs/1903.00621 论文代码:https://github.com/zccstig/mmd…
之前分享过<版本分支管理标准 - Git Flow>,不过在实际使用过程中, 因为其有一定的复杂度,使用起来较为繁琐,所以一些人员较少的团队并不会使用这个方案. 在这基础上,一些新的分支管理标准被提出.这里转发一下这个标准:<Trunk Based Development 主干开发模型>. Preface 在之前的博文中我们介绍了 Git Flow 分支模型,正如文中所说,Git Flow 偏向于控制管理,使用了较多的分支,流程颇为复杂.大量的团队在实践过程中也遇到了颇多问题,其中…
目标检测中的anchor-based 和anchor free 1.  anchor-free 和 anchor-based 区别 深度学习目标检测通常都被建模成对一些候选区域进行分类和回归的问题.在单阶段检测器中,这些候选区域就是通过滑窗方式产生的 anchor:在两阶段检测器中,候选区域是 RPN 生成的 proposal,但是 RPN 本身仍然是对滑窗方式产生的 anchor 进行分类和回归. anchor-free是通过另外一种手段来解决检测问题的.同样分为两个子问题,即确定物体中心和对…
本文转载自:http://blog.stupidme.me/2018/08/05/tensorflow-nmt-word-embeddings/,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有. 声明:本文由 罗周杨 stupidme.me.lzy@gmail.com 原创,未经授权不得转载 自然语言处理的第一步,就是要将文本表示成计算机能理解的方式.我们将长文本分词之后,得到一个词典,对于词典中的每一个词,我们用一个或者一组数字来表示它们.这样就实现了我们的目标. Embeddi…
Anchor Boxes 到目前为止,对象检测中存在的一个问题是每个格子只能检测出一个对象,如果你想让一个格子检测出多个对象,你可以这么做,就是使用anchor box这个概念. 我们还是先吃一颗栗子:   假设你有这样一张图片,对于这个例子,我们继续使用3×3网格,注意行人的中点和汽车的中点几乎在同一个地方,两者都落入到同一个格子中. 所以对于那个格子,如果 y 输出这个向量y   你可以检测这三个类别,行人.汽车和摩托车,它将无法输出检测结果,所以我必须从两个检测结果中选一个.   而anc…
MorsE:归纳知识图嵌入的元知识迁移 论文题目: Meta-Knowledge Transfer for Inductive Knowledge Graph Embedding 论文地址: https://scholar.archive.org/work/soegy2qe5jbbxbzdwrpgjvmhba/access/wayback/https://dl.acm.org/doi/pdf/10.1145/3477495.3531757 论文会议: ACM SIGIR 2022 目录 13.(…
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中.FSAF解决了传统基于anchor机制的两个限制:(1)启发式的特征选择(2)overlap-based anchor采样.FSAF的通用解释是将在线特征选择应用于与anchor无关的分支的训练上.即无anchor的分支添加到特征金字塔的每一层,从而可以以任意层次对box进行编码解码.训练过程中,将…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状更接近于目标物体的形状,但有时会超出ROI区域,从而引入不相关的图像信息进而对提取的特征造成影响.为此,本文提出了改造后的可变形卷积,通过增加建模及更强的训练来改善其聚焦图像相关区域的能力.通过在网路中引入更多的可变形卷积,同时,引入调制机制来扩大可变形的范围.为了有效的利用丰富的建模能力,通过一个…
原文:NeurIPS 2018 | 腾讯AI Lab详解3大热点:模型压缩.机器学习及最优化算法 导读 AI领域顶会NeurIPS正在加拿大蒙特利尔举办.本文针对实验室关注的几个研究热点,模型压缩.自动机器学习.机器学习与最优化算法,选取23篇会议上入选的重点论文进行分析解读,与大家分享.Enjoy! NeurIPS (Conference on Neural Information Processing Systems,神经信息处理系统进展大会)与ICML并称为神经计算和机器学习领域两大顶级学…