​  前言  本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 代码:https://github. com/micro…
​  前言 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积网络,从而获得更好的性能. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​ 论文:https://arxiv.org/abs/2203.03952 代码:https://github.com/hkzhang91/EdgeFormer 核心内容 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积…
​  前言  ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引入干扰信号. 为了缓解上述问题,本文提出了一种迭代渐进采样策略来定位区分区域.在每次迭代中,当前采样步骤的嵌入被馈送到transformer编码层,并预测一组采样偏移量以更新下一步的采样位置.渐进抽样是可微的.当与视觉transformer相结合时,获得的PS-ViT网络可以自适应地学习到哪里去看.…
前言  本文汇总了过去本公众号原创的.国外博客翻译的.从其它公众号转载的.从知乎转载的等一些比较重要的文章,并按照论文分享.技术总结三个方面进行了一个简单分类.点击每篇文章标题可阅读详细内容 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 今年是进入计算机视觉领域的第四年,做公众号的第一年,写了不少原创文章,从国外博客上翻译了不少我认为比较不错的文章,也从知乎上找了不少不错的文章在经作者授权后转载到公众号. 整体上来说,这一年基本保持初心,始终在做一…
​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比Siam R-CNN快6倍. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Learning Spatio-Temporal Transformer for Visual Tracking 代码:https:/…
​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
​前言 本文介绍了现有实例分割方法的一些缺陷,以及transformer用于实例分割的困难,提出了一个基于transformer的高质量实例分割模型SOTR. 经实验表明,SOTR不仅为实例分割提供了一个新的框架,还在MS Coco数据集上超过了SOTA实例分割方法. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:SOTR: Segmenting Objects with Transformers 代码:h…
​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从头开始训练时实现了3.0%以上的改进.通过直接在ImageNet上进行训练,它的性能也优于ResNet,达到了与MobileNet相当的性能. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Tokens-to-…
原创作者 | FLPPED 参考论文: A Survey of Transformers 论文地址: https://arxiv.org/abs/2106.04554 研究背景: Transformer在人工智能的许多领域取得了巨大的成功,例如自然语言处理,计算机视觉和音频处理,也自然吸引了大量的学术和行业研究人员的兴趣. 其最初是针对seq2seq的机器翻译模型而设计的,在后续的其他工作中,以Transformer为基础的预训练模型,在不同的任务中取得了state-of-the-art 的表现…
方法一: 转载:http://blog.csdn.net/chenlycly/article/details/46447297 转载:http://blog.csdn.net/harvic880925/article/details/8925650 方法二: 转载:http://blog.csdn.net/xdrt81y/article/details/22063479 搞Windows程序的人尽皆知分层窗口能够实现很多不错的效果,之前看过一些异形窗口的实现,所以就手痒也想自己搞一个玩一玩.自己…