令$c_{i}=a_{i}\oplus b_{i}$,那么也就是要对$c_{i}$执行操作使其变为0 显然有一个贪心的策略,即从左往右,若当前$c_{i}\ne 0$,则执行对$[i,i+k)$异或$c_{i}$的操作,若$i+k\ge n+2$则说明无解 更具体的,定义$p_{i}$为到第$i$个位置上时第$i$个位置上的操作,那么有$p_{i}=p_{i-k}\oplus c_{i-1}\oplus c_{i}$(特别的,$c_{0}=0$,若$i\le 0$则$p_{i}=0$) 解释一下…