首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「CF 802C」Heidi and Library (hard)
】的更多相关文章
Solution -「CF 802C」Heidi and Library (hard)
\(\mathcal{Descriptoin}\) Link. 你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\).如果你的书架里没有这本书,你就必须以 \(c_{a_i}\) 的价格购买这本书放入书架.当然,你可以在任何时候丢掉书架里的某本书.请求出完成这 \(n\) 个请求所需要的最少价钱. \(n,k\le80\). \(\mathcal{Solution}\) 网络瘤嘛-- 费用流,考虑先全部买入,再抵消花费.具体地…
Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击. 的摆放方案数,对 \(998244353\) 取模. \(n\le2\times10^5\). \(\mathcal{Solution}\) 这道<蓝题>嗷,看来兔是个傻子. 从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最大化 \(|S|\). \(n\le10^6\). \(\mathscr{Solution}\) 爆搜打出 \(20\) 以内的表,发现 \(|S|\approx n\).先研究偶数 \(n=2k\): \[\begin{aligned} \prod_{i=1}^{2k} i! &= \le…
Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varphi:V_1\rightarrow V_2\),使得 \(\forall (u,v)\in V_1^2,~(u,v)\notin E_1\lor (\varphi(u),\varphi(v))\notin E_2\),或声明无解. \(n\le10^4\). \(\mathscr{Solution…
Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机取整数 \(r\in[0,x]\),令 \(x\leftarrow r\).求变换完成后 \(x=i~(i=0..n)\) 的概率.答案模 \(998244353\). \(\mathcal{Solution}\) 令向量 \(\boldsymbol p\) 为此时 \(x\) 的取值概率,显然…
Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarrow u<v\).求一个对 \(E\) 的染色 \(f\),使得 \(\not\exist \lang v_1,v_2,\cdots,v_{k+1} \rang, |\{f(v_i,v_{i+1})\mid i\in[1,k]\}|=1\),同时最小化 \(f\) 的值域大小. \(2\le k…
Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: 对于 \(T\) 中任意结点 \(r\),若 \(r\) 存在左儿子 \(u\),则 \(r\not\equiv u\pmod2\): 若 \(r\) 存在右儿子 \(v\),则 \(r\equiv v\pmod2\): 给定 \(n\),求 好树 数量.答案对 \(998244353\) 取…
Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9+7\) 取模. 数据规模 \(n\le3\times10^4\). \(\text{Solution}\) 显然当 \(n<m\),答案为 \(0\),先特判掉. 首先列一个 naive 的 DP 方程,令 \(f(i,j)\) 为前 \(i\) 次操作选出的集合并大小为 \(j\)…
Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权,最大化其边权和,并保证 \(m_2\) 条边都在最小生成树中. \(n,m_1,m_2\le5\times10^5\). \(\mathcal{Solution}\) 先保证在 \(\text{MST}\) 中的限制--指定所有边权为 \(0\).并求出此时的 \(\text{MST}\)…
Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\) 关系,求合法树的个数. \(0\le m<n\le13\),\(q\le100\). \(\mathcal{Solution}\) 巧妙的状压 owo.不考虑限制,自然地有状态 \(f(u,S)\) 表示用 \(S\) 中的结点构成以 \(u\) 为根的树的方案数.转移相当于划分出一棵子…