Chain训练准则的计算】的更多相关文章

轮迭代时验证集的日志: log/compute_prob_valid.1000.log: LOG (nnet3-chain-compute-prob[5.5.100-d66be]:PrintTotalStats():nnet-chain-diagnostics.cc:194) Overall log-probability for 'output-xent' is -2.14993 per frame, over 18230 frames. LOG (nnet3-chain-compute-pr…
试题 算法训练 多阶乘计算 问题描述 我们知道,阶乘n!表示n*(n-1)(n-2)-21, 类似的,可以定义多阶乘计算,例如:5!!=531,依次可以有n!..!(k个'!',可以简单表示为n(k)!)=n*(n-k)(n-2k)-(直到最后一个数<=0). 现给定一组数据n.k.m,当m=1时,计算并输出n(1)!+n(2)!+-+n(k)!的值,m=2时计算并输出n(1)!+n(2)!+-+n(k)!的各个位上的数字之和. 输入格式 两行,第一行为n和k,第二行为m. 输出格式 一行,为n…
算法训练 表达式计算   时间限制:1.0s   内存限制:256.0MB 问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输出格式 输出这个表达式的值. 样例输入 1-2+3*(4-5) 样例输出 -4 数据规模和约定 表达式长度不超过100,表达式运算合法且运算过程都在int内进行.   题目解析: 运算优先级: 括号 → 乘除 → 加减 例如 1-2+3*(4-5) (1)计算(4-5),表达式变为  1-2+3*-…
栈的练习,如此水题竟然做了两个小时... 题意:给出矩阵大小和矩阵的运算顺序,判断能否相乘并求运算量. 我的算法很简单:比如(((((DE)F)G)H)I),遇到 (就cnt累计加一,字母入栈,遇到)减一,并出栈两个矩阵计算运算量,将计算后的矩阵压入栈.当cnt等于0时就输出运算量. 难点是当不能运算后的处理. 卡那么就其实主要是细节问题,最大的坑是里面退栈时倒着退出,没注意到结果每次计算都判断为不能计算... AC代码: #include <iostream> #include <cs…
一个预测层的网络结构如下所示: 可以看到,是由三个分支组成的,分别是"PriorBox"层,以及conf.loc的预测层,其中,conf与loc的预测层的参数是由PriorBox的参数计算得到的,具体计算公式如下: min_size与max_size分别对应一个尺度的预测框(有几个就对应几个预测框),in_size只管自己的预测,而max_size是与aspect_ratio联系在一起的: filp参数是对应aspect_ratio的预测框*2,以几个max_size,再乘以几:最终得…
Chain模型的训练流程 链式模型的训练过程是MMI的无网格的版本,从音素级解码图生成HMM,对其使用前向后向算法,获得分母状态后验,通过类似的方式计算分子状态后验,但限于对应于转录的序列. 对于神经网络的每个输出索引(即对于每个pdf-id),我们计算(分子占有概率 - 分母占用概率)的导数,并将它们在网络中反向传播. 分母FST 对于计算中的分母部分,我们对HMM进行前向-后向计算.实际上,由于我们把它表示为一个有限状态接受器,标签(pdf-id)与弧而不是状态相关联,所以在正常的公式中分母…
原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 -d 3 data_file 训练一个由多项式核(u'v+1)^3和C=1000组成的分类器. svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file 在RBF核函数exp(-0.5|u-v|^2)和终止允许限0.00001的条件下,训练一个?-SV…
快刀初试:Spark GraphX在淘宝的实践 作者:明风 (本文由团队中梧苇和我一起撰写,并由团队中的林岳,岩岫,世仪等多人Review,发表于程序员的8月刊,由于篇幅原因,略作删减,本文为完整版) 对于网络科学而言,世间万物都可以抽象成点,而事物之间的关系都可以抽象成边,并根据不同的应用场景,生成不同的网络,因此整个世界都可以用一个巨大的复杂网络来代表.有关复杂网络和图算法的研究,在最近的十几年取得了巨大的进展,并在多个领域有重要的应用. 作为最大的电商平台,淘宝上数亿买家和卖家,每天产生数…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的来说是很受用的.全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled here should be taken as a guideline, to be tried and challenged, not as a pra…