P1637 三元上升子序列】的更多相关文章

P1637 三元上升子序列 48通过 225提交 题目提供者该用户不存在 标签云端 难度提高+/省选- 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 为什么超时啊 a的数据比较大啊,真的能用… 题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i<j<k且ai<aj<ak 求一个序列中"thair"…
题目链接:https://www.luogu.org/problemnew/show/P1637 BIT + 离散化. 读题得数据规模需离散化.BIT开不到longint这么大的数组. 对于题目所求的三元上升子序列,我们可以通过枚举1~n作为中间数,记录左边比他小的个数L[i],右边比他大的个数R[i],那么对于第i个中间数就有L[i]*R[i]个子序列. L,R可以通过树状数组求得. #include <cstdio> #include <cstring> #include &l…
题目传送门 emmm..不开结构体的线段树真香! 首先我们知道"三元上升子序列"的个数就是对于序列中的每个数,**它左边比他小的数*它右边比他大的数**.但是如何快速求出这两个数? 我们用到权值线段树来维护.一般我们的线段树都是以下标延伸的,但是这里我们用的是权值,一般需要离散化,效果相当于一个桶. 这部分讲解请移步绝世好文 第一次我们从\(1\)~\(n\)循环是为了找它左边的,而找比他小的值是在线段树的\(1\)~\(seq[i]-1\)中找.第二次我们从\(n\)~\(1\)循环…
thair 好,这个naive的东西因为只有三元,很好求解.只要把每个数之前小的L[i]与之后大的R[i]求一下即可. 求两次逆序对即可.那么答案便是∑(L[i]*R[i]); 对于更高元的,胡雨菲写的是要用DP 那么先放水的一批的代码 (就这还洛谷蓝题,我直接给的黄题) #include <cstdio> #include <algorithm> #define lowbit(a) (a&(-a)) using namespace std; ; int x[N],tree…
题目描述 Erwin最近对一种叫"thair"的东西巨感兴趣... 在含有n个整数的序列a1,a2......an中, 三个数被称作"thair"当且仅当i<j<k且ai<aj<ak 求一个序列中"thair"的个数. 输入输出格式 输入格式: 开始一个正整数n, 以后n个数a1~an. 输出格式: "thair"的个数 输入输出样例 输入样例#1: 4 50 18 3 4 6 8 14 15 16 1…
题目大意:给定一个长度为 N 的序列,求有多少个三元组满足 \(i<j<k,a_i<a_j<a_k\). 题解:这是一类二维偏序问题,与逆序对问题类似. 对于序列中每个点来说,用树状数组统计左边有多少个值比他小,右边有多少个值比他大,最后扫一遍数组计算答案贡献即可. 代码如下 #include <bits/stdc++.h> #define fi first #define se second #define pb push_back #define mp make_p…
对于每个数$a_i$,易得它对答案的贡献为 它左边比它小的数的个数$\times$它右边比它大的数的个数. 可以离散化后再处理也可以使用动态开点的线段树. 我使用了动态开点的线段树,只有需要用到这个节点的时候才新建这个节点,这里我是在进行修改的时候新建的. 时间复杂度$O(n\log \rm MAX\_INT)$,空间复杂度$O(n\log \rm MAX\_INT)$(常数真的很大) 以下是代码,不清楚的地方已标出. #include <bits/stdc++.h> using namesp…
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array. Formally the function should: Return true if there exists i, j, k such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return…
LeetCode:递增的三元子序列[334] 题目描述 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false . 说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) . 示例 1: 输入: [1,2,3,4,5] 输出: true 示例 2: 输入:…
递增的三元子序列 给定一个未排序的数组,判断这个数组中是否存在长度为 3 的递增子序列. 数学表达式如下: 如果存在这样的 i, j, k,  且满足 0 ≤ i < j < k ≤ n-1,使得 arr[i] < arr[j] < arr[k] ,返回 true ; 否则返回 false . 说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1) . 示例 1: 输入: [1,2,3,4,5] 输出: true 示例 2: 输入: [5,4,3,2,1] 输出: fal…